
• An orthonormal polynomial series can be thought 
of as determined by some weight function 𝝎. 

• [Three-term Recurrence]  Any orthonormal polynomial 
series satisfies the three-term recurrence formula: 

• [Favard’s Theorem] Conversly, any polynomial 
series of such a recurrence is deemed to be 
orthonormal w.r.t. some weight function!

Orthonormal polynomials ⬅ 𝝎:          

• Given a weight function, it is easy to construct 
an orthonormal polynomial series by the 
Gram-Schmidt process. 

𝑝𝑘+1 ← 𝑥𝑝𝑘 − 𝑥𝑝𝑘 , 𝑝𝑘 𝜔 − 𝑥𝑝𝑘 , 𝑝𝑘−1 𝜔

− 𝑥𝑝𝑘 , 𝑝𝑘−2 𝜔 −⋯ // Orthogonalize

𝑝𝑘+1 ← 𝑝𝑘+1/|𝑝𝑘+1| // Normalize

We are actually familiar with `Three-
term Recurrence’ !                                     

• A more general three-term recurrence formula 
is for orthogonal polynomial series. 

• In fact, the property of three-term recurrences 
for orthogonal polynomials has been used 
multiple times in the context of current spectral 

GNNs to reuse 𝑔𝑘 𝑃 𝑥 and 𝑔𝑘−1 𝑃 𝑥 for the 

calculation of 𝑔𝑘+1 𝑃 𝑥.

Example: Chebyshev polynomial series, which is 

orthogonal w.r.t. 𝑤(𝑥) = 1/ 1 − 𝑥2, satisfies the 
following three-term recurrence:

𝑇0 𝑥 = 1
𝑇1 𝑥 = 𝑥

𝑇𝑘+1 𝑥 = 2𝑥𝑇𝑘 𝑥 − 𝑇𝑘−1 𝑥 (𝑘 ≥ 2)

Orthonormal Polynomial Series/Basis

• Inner product of polynomials 
• 𝑓, 𝑔 = 𝑓(𝑥)𝑔(𝑥)𝑤(𝑥) d𝑥;

• 𝑤 𝑥 : weight function; positive.

• Orthonormal polynomial series
• 𝑝𝑛 𝑛=0

∞ , 𝒑𝒏 is of order 𝒏 ;
• 𝑝𝑛, 𝑝𝑚 𝒘 = 𝛿𝑚𝑛 .

Example:  Chebyshev basis 𝑇𝑛 𝑛=0
∞ is orthogonal

w.r.t. 𝑤 𝑥 =
1

1−𝑥2
, yet not orthonormal.

Polynomial bases on the scene !

Proposition 4.4 In Algorithm 4, 𝑣𝑘+1
∗ is 

only dependent with 𝑣𝑘 and 𝑣𝑘−1. 

Solving optimal 
polynomial basis

• The authors believe habitually that intractable eigen-decomposition is 
unavoidable. Thus the optimal basis cannot be utilized.

• Definition of Optimal Basis (Derived by 
Wang&Zhang, ICML’22)

,then the polynomial is solved in 

an accompanying way.

Solving optimal   
vector basis 

(Summary of Definition 4.1 & Proposition 4.2)  For a given graph signal 𝑥, polynomial 

basis 𝑔𝑘 𝑘=0
𝐾 is optimal in convergence rate when 𝐻𝑘1𝑘2 = 𝑥T𝑔𝑘2

𝑃 𝑔𝑘1
𝑃 𝑥 =

𝛿𝑘1𝑘2. The exact weight function of of 𝑔𝑘 𝑘=0
𝐾 is also, relying on Rienman sum and 

Eigen-decomposition of 𝑃.

A Review of 
previous work

1. Consider optimal vectors, instead of polynomials (Alg. 4)
• Condition 1: 𝑣𝑘1𝑣𝑘2 = 𝛿𝑘1𝑘2 (orthonormality).

• Condition 2: ∀𝑘, ∃𝑔𝑘 , 𝑣𝑘 = 𝑔𝑘 𝑃 𝑥. (Existence of accompanying polynomial, 

which exactly would be the optimal basis polynomial)

• => Filtered signal: 𝒙 ↦ 𝛴𝑘=0
𝐾 𝛼𝑘𝑣𝑘

• => Complexity: 𝑂(𝐾|𝑉|2 + 𝐾|𝐸|)

Our Method

2. Use Proposition 4.4 to reduce complexity to 𝑂(𝐾|𝑉| + 𝐾|𝐸|). 
(Plug Alg.5 into Alg.4).   

3. The nature of this method: 
• shifting from defining the optimal  polynomial series via 

weight function to  defining it via three-term recurrences. 
• Discussed in Section 4.3

Model I: FavardGNN
Learn polynomial basis 

Model II: OptBasisGNN
Efficiently Solved Optimal Basis

Experiments

Node Classification Tasks
• Medium sized datasets (2k ~ 20k Nodes) 

• Geom-GCN datasets (Heterophilious)
• Citation Networks (Homophilious)

• LINKX Datasets
• Penn94, Genius, Twitch-Gamer (40k ~ 1m Nodes)
• Pokec, Wiki (1m ~ 2m Nodes)

• OGBN Datasets
• Papers100M (100m Nodes) 

Outstanding 

High ranks

Scalability 

Table 1. Please check Table 2 & 3 for FavardGNN and OptBasisGNN’s

performances on other node classification tasks.

Multichannel Regression Task

• Task: min
1

2
|𝑍 − 𝑌|𝐹

2

• 𝑋: Input signals

• 𝑍: Filtered signals.  𝑍:,𝑖 = 𝛴𝑘=0
𝐾 𝛼𝑘 𝑔𝑘 ෩𝐏 𝑋:,𝑖

• 𝑌: Signals filtered by true filters (Synthetic)

• Synthetic datasets (60 samples):
• Three channels: Y, Cb and Cr channels in 

computer vision
• 100x100 grid graphs
• True filters: Chosen from Band-Reject / 

Low-pass / High-pass/

OptBasis: Smallest error

OptBasis: Most rapid convergence !

• Worth-noting: 
FavardGNN show large 
bumps, indicating 

bad convergence       
property.

• Question 1: Can we learn orthonormal basis?

Motivation
Challenge this convention !

• Researchers are trying to applying different basis  
to polynomial filters. 

• Choice of basis impact practical performance.
Examples:  Monomial Basis (GPRGNN; Chien et al., 2021); Chebyshev 
Basis (Defferrard et al., 2016; He et al., 2021); Bernstein Basis (He et 
al., 2021) ; Jacobi Basis (Wang & Zhang, 2022) 

Motivation: Existing works choose basis from famous named 
polynomial bases. But the proportion of our knowledge, compare to 

the vast space of polynomial series, is small. How to learn from the 
vast space of all possible orthonormal basis?

Graph Neural 
Networks

Spatial GNNs

Polynomial 
Filters

Other Filters

Spectral 
GNNs

Graphs as carrier
of messages 

Graphs as raw 
materials to 
decompose basic 
structural frequency 
components.

Polynomial →(approximate) 
filtering function

Efficiency makes them 
dominant in spectral GNNs.

Consider 
topological 
relations 

We are
here !

𝒙 ↦ ℎ 𝑳 𝒙 or 𝒃 𝑷 𝒙

BG: Polynomial Filtering

Computed 
Localized !

𝒙 ↦ 𝛴𝑘=0
𝐾 𝛼𝑘 𝑔𝑘 ෩𝐏 𝒙

Arbitrary coefficients  Predetermined

polynomial basis  

Graph 
Signal

Graph Fourier 
Transformation

Filtering / 
Modulation

Graph Fourier Inverse 
Transformation

𝒙 ↦ 𝐔 ⋅ diag 𝜃1, … , 𝜃𝑁 ⋅ 𝐔T ⋅ 𝒙 BG: Spectral GNNs

…

𝑢1
T

𝑢2
T

𝑢𝑁
T

…𝑢1 𝑢2 𝑢𝑁

𝜃1
𝜃2

𝜃𝑁

⋅⋅⋅ 𝒙

• Laplacian’s eigenvectors 
used as basic components.

• Frequency Responses on 

the 𝑖-th component: 𝑢𝑖
T𝑥.

• Frequency Responses 
on the 𝑖-th component 

adjusted to 𝜃𝑖𝑢𝑖
T𝑥.

• Back to the nodal 
/ spatial domain

Shortcoming: Eigen-decomposition required; intractable on large graphs.

𝒙 ↦ 𝐔 ⋅ diag ℎ 𝜆1 , … , ℎ 𝜆𝑁 ⋅ 𝐔T ⋅ 𝒙

• Question 2: Can we efficiently utilize the 
optimal basis?

Motivation: Is there an optimal basis for given (graph, signal)? 
Wang&Zhang(ICML’22) raised a criterion, but habitually believe that 
this optimal basis is intractable. Can we utilize this optimal basis 
efficiently?

Spectral GNNs:
• Emerges from Graph Signal Processing
• Node Feature → Multichannel Signals
• Laplacian eigenvectors → frequency 

components

𝐇∗

∈ ℝ𝑁×𝑑

𝒙 Consider a 
column of 
the feature 
matrix

Figure source: David I 

Shuman, Benjamin Ricaud, and 

Pierre Vandergheynst. 2013. 

Vertex Frequency Analysis on 

Graphs. (7 2013)

Scatter 𝑥 onto 
the nodes

• Node Feature →
Multichannel 
Signals
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Eigen Decomposition:  መ𝐋 = 𝐔𝚲𝐔𝐓
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Varying frequency patterns

• Laplacian 
eigenvectors →
frequency 

components
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Description
Undirected, connected graph

Symmetric-normalized adjacency matrix of 𝐺

Symmetric-normalized Laplacian matrix of 𝐺.
𝐿 = 𝐼 − 𝑃.

Input/Filtered signal on one channel.

Input/Filtered signals on 𝑑 channels.

Notation

𝐺 = (𝑉, 𝐸)

𝑃

𝐿

𝑥, 𝑧 ∈ ℝ𝑁

𝑋, 𝑍 ∈ ℝ𝑁×𝑑

Learn orthonormal 
polynomial series 

of order 𝐾

Learn parameters

and 𝛽𝑖𝛾𝑖


