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GCNII: 𝐇(ℓ+1) = 𝜎 ((1 − 𝛼)෩𝐏𝐇 ℓ +𝜶𝐇∗)((1 − 𝜃ℓ)𝐖
(ℓ) + 𝜃ℓ𝐈)
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Unfold it !

𝐇(ℓ+1) = ෩𝐏𝐇 ℓ + 𝜶ℓ𝐇
∗

Free the coefficients!

𝐇(𝐾) =

ℓ=0
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Unfold it ! 

Horner’s Method: Evaluates the value of 𝑝 𝑥 at

𝑥0 where 𝑝 𝑥 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥
𝑛.

Unfolding Process

Unfolding Process (1) corresponds to 
Horner’s Method! An iterative method for 
numerical evaluating.

A Warm-up

TL;DR: 

• A small modification on GCNII allows for 
arbitrary polynomial filter expressiveness. 

• Underlying is a correspondence between 
evaluating method and convolution stack.

𝐇(ℓ+1) = 𝜎 (𝟐෩𝐏𝐇 ℓ − 𝐇(ℓ−1) + 𝛼ℓ𝐇
∗)((1 − 𝜃ℓ)𝐖

(ℓ) + 𝜃ℓ𝐈)

Model
ClenshawGCN

Clenshaw’s Algorithm: Evaluates the 

value of 𝑝 𝑥 at 𝑥0 where 𝑝 𝑥 = 𝑎0 + 𝑎1𝑈1 𝑥 +⋯+
𝑎𝑛𝑈𝑛 𝑥 , and 𝑈𝑘 is the 𝑘-th Chebyshev polynomial (the 
2nd kind).

Unfolding Process of 

ClenshawGCN

𝐇(−2) = 𝟎
𝐇(−1) = 𝟎

𝐇(ℓ+1) = 2෩𝐏𝐇(ℓ) − 𝐇(ℓ−1) + 𝛼ℓ𝐇
(0)

(𝑖 = 0, 1, . . . , 𝐾)

𝑏𝑛+2 𝑥0 ≔ 0
𝑏𝑛+1 𝑥0 ≔ 0
𝑏𝑘 𝑥0 ≔ 𝑎𝑘 + 2𝑥0𝑏𝑘+1 𝑥0 − 𝑏𝑘+2 𝑥0

(𝑘 = 𝑛, 𝑛 − 1, . . . , 0)

• Two shortcuts.
• Allows for simulating arbitrary polynomial filter upon Chebyshev basis (the second 

kind). 
• The convolution process mimics Clenshaw’s algorithm.
• Inherits strengths from both spatial GNNs and spectral GNNs.

Competitive ！

v.s. Representative 
residual-enhanced 
spatial GNNs.

v.s. SoTA spectral
GNNs 

Large margin on hete-graphs

Ablation: 
No model 
degradation

Ablation:
Effectiveness of interwining
nonlinear tranformations
into polynomial filters.

Experiments
Node classification & 

Ablations

• Spectral GNNs are dominated by polynomial filters so far. 
SoTA polynomial filters can approximate arbitrary 
polynomial functions using polynomial basis.

• Spatial GNNs benefit from entangled non-linear 
transformations.

• Spatial GNNs and spectral GNNs adopt different perspectives 
in utilizing graphs.

• We use simple residual connections to rewire the information 
flow, injecting spectral characteristics into a message passing 
(spatial) backbone, keeping the entangled transformations.

• The stack of convolution blocks aligns with the iteration of 
Clenshaw’s algorithm.

• There is a special negative residual. The role of it is to use 
Chebyshev Basis.
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Spatial GNNs
𝑯 ↦ ෩𝑷𝑯𝑾(ℓ)

Residual connections 
equipped spatial GNNs

• Categorization: Vanilla/initial/dense residuals.
• Motivations: Tackling model degradation; 

enhance expressiveness. 

𝒙 ↦ 𝐔 ⋅ diag 𝜃1, … , 𝜃𝑁 ⋅ 𝐔T ⋅ 𝒙Spectral GNNs

Polynomial Filters 𝒙 ↦ 𝐔 ⋅ diag ℎ 𝜆1 , … , ℎ 𝜆𝑁 ⋅ 𝐔T ⋅ 𝒙

𝒙 ↦ ℎ ෩𝑷 𝒙 or 𝒃 ෩𝑷 𝒙
Computed 
Localized !



𝑘=0

𝐾

𝛼𝑘 𝑔𝑘(෩𝑷)

Feature 1: 

Arbitrary coefficients.  

Feature II: 

Utilizing polynomial basis.  

Our 
contribution

• Simple & novel residuals;
• Equip a spatial GCN to simulate a full-featured 

polynomial filter.
• Gap between spatial & spectral GNNs.

𝐇∗

∈ ℝ𝑁×𝑑

𝒙 Consider a 
column of 
the feature 
matrix

𝐇∗

∈ ℝ𝑁×𝑑

Footnote: on spectral GNN

See Footnote.
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