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Abstract

Polynomial filters, a kind of Graph Neural Net-
works, typically use a predetermined polynomial
basis and learn the coefficients from the training
data. It has been observed that the effectiveness of
the model is highly dependent on the property of
the polynomial basis. Consequently, two natural
and fundamental questions arise: Can we learn a
suitable polynomial basis from the training data?
Can we determine the optimal polynomial basis
for a given graph and node features?

In this paper, we propose two spectral GNN mod-
els that provide positive answers to the questions
posed above. First, inspired by Favard’s Theo-
rem, we propose the FavardGNN model, which
learns a polynomial basis from the space of all
possible orthonormal bases. Second, we examine
the supposedly unsolvable definition of optimal
polynomial basis from Wang & Zhang (2022) and
propose a simple model, OptBasisGNN, which
computes the optimal basis for a given graph struc-
ture and graph signal. Extensive experiments
are conducted to demonstrate the effectiveness
of our proposed models. Our code is available at
https://github.com/yuziGuo/FarOptBasis.

1. Introduction
Spectral Graph Neural Networks are a type of Graph Neu-
ral Networks that comprise the majority of filter-based
GNNs (Shuman et al., 2013; Isufi et al., 2021; 2022). They
are designed to create graph signal filters in the spectral
domain. To avoid eigendecomposition, spectral GNNs ap-
proximate the desired filtering operations by polynomials
of laplacian eigenvalues.
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As categorized in He et al. (2022), there are mainly
two kinds of spectral GNNs. In some works, the de-
sired polynomial filters are predefined. For example,
GCN (Kipf & Welling, 2017) fixes the filter to be I− L̂, and
APPNP (Klicpera et al., 2019) restricts the filtering function
within the Personalized Pagerank.

Another line of research approximates arbitrary filters with
learnable polynomials. These models typically fix a prede-
termined polynomial basis and learn the coefficients from
the training data. ChebNet (Defferrard et al., 2016) uses
Chebyshev basis following the tradition of Graph Signal Pro-
cessing (Hammond et al., 2009). GPR-GNN (Chien et al.,
2021) uses Monomial basis, which is straightforward. Bern-
Net (He et al., 2021) uses the non-negative Bernstein basis
for regularization and interpretation. JacobiConv (Wang &
Zhang, 2022) chooses among the family of Jacobi polyno-
mial bases, with the exact basis determined by two extra
hyperparameters. ChebNetII (He et al., 2022) revisits the
Chebyshev basis, and incorporates the power of Chebyshev
interpolation by reparameterizing learnable coefficients by
chebynodes. Please refer to Section 2.1 for more concrete
backgrounds about polynomial filtering.

However, there are still two fundamental challenges on the
choice of basis.

Challenge 1: It is well known and checked by ablation
studies (Wang & Zhang, 2022) that the choice of basis has
a significant impact on practical performance. However,
the proportion of known polynomial bases is small and
may not include the best-fitting basis for a given graph and
signal. Therefore, we pose the following question: Can we
learn a polynomial basis from the training data out of
all possible orthonormal polynomials? 1

Challenge 2: On the other hand, although these bases dif-
fer in empirical performances, their expressiveness should
be the same: any target polynomial of order K can be rep-
resented by any complete polynomial basis with truncated
order K (See Figure 1 for an example). Therefore, Wang &
Zhang (2022) raised a definition of optimal basis from an
optimization perspective, which promises an optimal conver-
gence rate. However, this basis is believed to be unsolvable
using existing techniques. Consequently, a natural question

1For the concrete definition of orthonormal polynomial bases,
please check the preliminaries in Section 2.2.
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Figure 1. Representation of h(λ) = λ2 + 1 by different bases.

is: can we compute this optimal basis for a given graph
and signal using innovative techniques?

In this paper, we provide positive answers to the questions
posed above. We summarize our contributions in three folds.
Firstly, we propose FavardGNN with learnable orthonor-
mal basis to tackle the first challenge. The theoretical basis
of FavardGNN is two Theorems in orthogonal polynomials:
the Three-term recurrences and its converse, Favard’s Theo-
rem. FavardGNN learns from the whole space of possible
orthonormal basis with 2(K+1) extra parameters. Secondly,
we propose OptBasisGNN with solvable optimal basis. We
solve the optimal basis raised by Wang & Zhang (2022) by
avoiding the explicit solving of the weight function , which
invites the need for eigendecomposition. Note that although
we write out the implicitly defined/solved polynomial series
in the methodology section, we never need to solve it explic-
itly. Last but not least, we conduct extensive experiments
to demonstrate the effectiveness of our proposed models.

2. Background and Preliminaries
2.1. Background of Spectral GNNs

In this section, we provide some necessary backgrounds of
spectral graph neural networks, and show how the choice of
polynomial bases emerges as a problem. Notations used are
summarized in Table 6 in Appendix A.

Graph Fourier Transform. Consider an undirected and
connected graph G = (V,E) with N nodes, its symmetric
normalized adjacency matrix and laplacian matrix are de-
noted as P̂ and L̂, respectively, L̂ = I − P̂ . Graph Fourier
Transform, as defined in the spatial/spectral domain of graph
signal processing, is analogous to the time/frequency do-
main Fourier Transform (Hammond et al., 2009; Shuman
et al., 2013) . One column in the representations of N nodes,
X ∈ RN×d, is considered a graph signal, denoted as x. The
complete set of N eigenvectors of L̂, denoted as U , who
show varying structural frequency characteristics (Shuman
et al., 2013), are used as frequency components. Graph
Fourier Transform is defined as x̂ := UTx , where signal
x is projected to the frequency responses of all compo-
nents. It is then followed by modulation, which suppresses
or strengthens certain frequency components, denoted as
x̂∗ := diag{θ0, · · · , θN−1}x̂ . After modulation, inverse

Fourier Transform: x∗ := Ux̂∗ transforms x̂∗ back to the
spatial domain. The three operations form the process of
spectral filtering: U diag{θ0, θ1, . . . , θN−1}UTx (1) .

Polynomial Approximated Filtering. In order to avoid
time-consuming eigendecomposition, a line of work ap-
proximate θi by some polynomial function of λi, which
is the i-th eigenvalue of L̂, i.e. θi ≈ h(λi). Equation (1)
then becomes a form that is easy for fast localized calcula-
tion: U diag{h(λ0), h(λ1), . . . , h(λN−1)}UTx = h(L̂)x.
As listed in Introduction, various polynomial bases have
been utilized, denoted as h(λ) =

∑K
k=0 αkgk(λ). For fur-

ther simplicity, we equivalently use b(P̂ ) instead of h(L̂)
in this paper, where b(P̂ ) := h(I − P̂ ). Note that b(·) is
defined on the spectrum of P̂ , and the i-th eigenvalue of P̂ ,
denoted as µi, equals 1− λi.

The filtering process on the input signal x is then expressed

as x→ z =
∑K

k=0 αkgk(P̂ )x . When consider indepen-
dent filtering on each of the d channels in X simulta-
neously, the multichannel filtering can be denoted as:
X → Z = ∥

l∈[1,h]

∑K
k=0 αk,lgk,l(P̂ )X:,l (2).

2.2. Orthogonal and Orthonormal Polynomials

In this section, we give a formal definition of orthogonal
and orthonormal polynomials, which plays a central role in
the choosing of polynomial bases (Simon, 2014).

Inner Products. The inner product of polynomials is de-

fined as ⟨f, g⟩ :=
∫ b

a
f(x)g(x)w(x)dx , where f , g and w

are functions of x on interval (a, b), and the weight func-
tion w should be non-negative to guarantee the positive-
definiteness of inner-product space.

The definition of the inner products induces the definitions
of norm and orthogonality. The norm of polynomial f is

defined as: ∥f∥ =
√
⟨f, f⟩ , and f and g are orthogonal

to each other when ⟨f, g⟩ = 0 . Notice that the concept of
inner product, norm, and orthogonality are all defined with
respect to some weight function.

Orthogonal Polynomials. A sequence of polynomi-
als {pn(x)}∞n=0 where pn(x) is of exact degree n, is
called orthogonal w.r.t. the positive weight function

2
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Algorithm 1: FAVARDFILTERING

Input: Input signals X with d channels; Normalized
graph adjacency P̂ ; Truncated polynomial order
K

Learnable Parameters :β, γ, α
Output: Filtered Signals Z

1 x−1 ← 0
2 for l = 0 to d− 1 do
3 x← X:,l , x0 ← x/

√
β0,l , z ← α0,lx0

4 for k = 0 to K do
5 xk+1 ←

(P̂ xk − γk,lxk −
√

βk,lxk−1)/
√

βk+1,l

6 z ← z + αk+1,lxk+1

7 Z:,l ← z

8 return Z

w(x) if, for m,n = 0, 1, 2, · · · , there exists ⟨pn, pm⟩ =
δmn∥pn∥2(∥pn∥2 ̸= 0), where the inner product ⟨f, g⟩ is
defined w.r.t. w(x). When ∥pn∥2 = 1 for n = 0, 1, 2, · · · ,
{pn(x)}∞n=0 is known as orthonormal polynomial series.

When a weight function is given, the orthogonal or orthonor-
mal series with respect to the weight function can be solved
by Gram-Schmidt process.
Remark 2.1. In this paper, the orthogonal/orthonormal poly-
nomial bases we consider are truncated polynomial series,
i.e. the polynomials that form a basis are of increasing order.

3. Learnable Basis via Favard’s Theorem
Empirically, spectral GNNs with different polynomial bases
vary in performance on different datasets, which leads to two
observations: (1) the choice of bases matters; (2) whether a
basis is preferred might be related to the input, i.e. different
signals on their accompanying underlying graphs.

For the first observation, we notice that up to now, polyno-
mial filters pick polynomial bases from well-studied polyno-
mials, e.g. Chebyshev polynomials, Bernstein polynomials,
etc, which narrows down the range of choice. For the sec-
ond observation, we question the reasonableness of fixing
a basis during training. A related effort is made by Jacobi-
Conv (Wang et al., 2019), who adapt to a Jacobi polynomial
series from the family of Jacobi polynomials via hyperpa-
rameter tuning. However, the range they choose from is
discrete. Therefore, we aim at dynamically learn polyno-
mial basis from the input from a vast range.

3.1. Recurrence Formula for Orthonormal Bases

Luckily, the Three-term recurrences and Favard’s theorem
of orthonormal polynomials provide a continuous param-
eter space to learn basis. Generally speaking, three-term

Algorithm 2: FAVARDGNN (For Classification)
Input: Raw features Xraw; Normalized graph

adjacency P̂ ; Truncated polynomial order K
Learnable Parameters :W0, b0, W1, b1, β, γ, α
Output: Label predictions Ŷ

1 X ← XrawW0 + b0

2 Z ←FAVARDFILTERING(X , P̂ , K, β, γ, α)
3 Ŷ ←Softmax(ZW1 + b1)

recurrences states that every orthonormal polynomial series
satisfies a very characteristic form of recurrence relation,
and Favard’s theorem states the converse.
Theorem 3.1 (Three Term Recurrences for Orthonormal
Polynomials). (Gautschi, 2004, p. 12) For orthonormal
polynomials {pk}∞k=0 w.r.t. weight function w, suppose that
the leading coefficients of all polynomials are positive, there
exists the three-term recurrence relation:

√
βk+1 pk+1(x) = (x− γk)pk(x)−

√
βk pk−1(x),

p−1(x) := 0, p0(x) = 1/
√

β0,

γk ∈ R,
√

βk ∈ R+, k ≥ 0 (3)

∫
w(x)dxwith β0 = .

Theorem 3.2 (Favard’s Theorem; Orthonormal Case).
(Favard, 1935), (Simon, 2005, p. 14) A polynomial se-
ries {pk}∞k=0 who satisfies the recurrence relation in Equa-
tion (3) is orthonormal w.r.t. a weight function w that
β0 =

∫
w(x)dx.

By Theorem 3.2, any possible recurrences with the form (3)
defines an orthonormal basis. By Theorem 3.1, such a
formula covers the whole space of orthonormal polynomials.
If we set {√βk} and {γk} to be learnable parameters with√
βk > 0(k ≥ 0), any orthonormal basis can be obtained.

We put the more general orthogonal form of Theorem 3.1
and Theorem 3.2 in Appendix B.1 to B.5. In fact, the prop-
erty of three-term recurrences for orthogonal polynomials
has been used multiple times in the context of current spec-
tral GNNs to reuse gk(P̂ )x and gk−1(P̂ )x for the calcula-
tion of gk+1(P̂ )x. Defferrard et al. (2016) owe the fast filter-
ing of ChebNet to employing the three-term recurrences of
Chebyshev polynomials (the first kind, which is orthogonal
w.r.t. 1√

x2−1
): Tk+1(x) = 2xTk(x)− Tk−1(x). Similarly,

JacobiConv (Wang & Zhang, 2022) employs the three-term
recurrences for Jacobi polynomials (orthogonal w.r.t. to
(1 − x)a(1 + x)b). In this paper, however, we focus on
orthonormal bases because they minimize the mutual influ-
ence of basis polynomials and the influence of the unequal
norms of different basis polynomials.

3
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3.2. FavardGNN

Formulation of FavardGNN. We formally write the ar-
chitecture of FAVARDGNN (Algorithm 2), with the filtering
process illustrated in FAVARDFILTERING (Algorithm 1).
Note that the iterative process of Algorithm 1 (lines 3-5)
follows exactly from Equation (3) in Favard’s Theorem.
The key insight is to treat the coefficients β, γ, α in Equa-
tion (3) as learnable parameters. Since Theorem 3.1 and
Theorem 3.2 state that the orthonormal basis must satisfy
the employed iteration and vice versa, it follows that the
model can learn a suitable orthonormal polynomial basis
from among all possible orthonormal bases.

Following convention, before FAVARDFILTERING, an MLP
is used to map the raw features onto the signal channels
(often much less than the dimension of raw features). In
regression problems, the filtered signals are directly used as
predictions; for classification problems, they are combined
by another MLP followed by a softmax layer.

Parallel Execution. Note that for convenience of presen-
tation, we write the FAVARDFILTERING Algorithm in a
form of nested loops. In fact, the computation on different
channels (the inner loop k) is conducted simultaneously.
We put more concrete implementation in PyTorch-styled the
pseudocode in Appendix C.1.

3.3. Weaknesses of FavardGNN

However, there are still two main weaknesses of
FavardGNN. Firstly, the orthogonality lacks interpretability.
The weight function w can only be solved analytically in a
number of cases (Geronimo & Van Assche, 1991). Even if
the weight function is solved, the form of w might be too
complicated to understand.

Secondly, FAVARDFILTERING is not good in convergence
properties: consider a simplified optimization problem
min ∥Z − Y ∥2F which has been examined in the context
of GNN (Xu et al., 2021; Wang & Zhang, 2022), even this
problem is non-convex w.r.t the learnable parameters in Z.
We will re-examine this problem in the experiment section.

4. Achieving Optimal Basis
Although FavardGNN potentially reaches the whole space
of orthonormal polynomial series, on the other hand, we still
want to know: whether there is an optimal and accessible
basis in this vast space.

Recently, Wang & Zhang (2022) raises a criterion for opti-
mal basis. Since different bases are the same in expressive-
ness, this criterion is induced from an angle of optimization.
However, Wang & Zhang (2022) believe that this optimal
basis is unreachable. In this section, we follow this defini-
tion of optimal basis, and show how we can exactly apply

this optimal basis to our polynomial filter with O(K|E|)
time complexity.

Wang & Zhang (2022) make an essential step towards this
question: they derive and define an optimal basis from the
angle of optimization. However, they do not exhaust their
own finding in their model, since based on a habitual process,
they believe that the optimal basis they find is inaccessible.
In this section, we show how we can exactly apply this
optimal basis to our polynomial filter in O(K|E|) time
complexity.

4.1. A Review: A Definition for Optimal Basis

We start this section with a quick review of the related part
from Wang & Zhang (2022), with a more complete review
put in Appendix E.

Definition of Optimal Basis. Wang & Zhang (2022)
considers the squared loss R = 1

2∥Z − Y ∥2F, where Y is
the target signal. Since each signal channel contributes
independently to the loss, the authors then consider the
loss function channelwisely and ignore the index l, that is,
r = 1

2∥z − y∥2F, where z =
∑K

k=0 αkgk(P̂ )x.

The task at hand is to seek a polynomial series {gk}Kk=0

which is optimal for the convergence of coefficients α. Since
r is convex w.r.t. α, the gradient descent’s convergence rate
reaches optimal when the Hessian matrix is identity. The
(k1, k2) element (k1, k2 ∈ [0,K]) of the Hessian matrix is:

Hk1k2
=

∂2r

∂αk1
∂αk2

= xTgk2
(P̂ )gk1

(P̂ )x. (4)

Definition 4.1 (Optimal basis for signal x). For a
given graph signal x, polynomial basis {gk}Kk=0 is
optimal in convergence rate when H given in (4) is
an identity matrix.

Wang & Zhang (2022) further reveal the orthonormality
inherent in the optimal basis by rephrasing Equation (4) into
Hk1k2

=
∫ 1

µ=−1
gk1

(µ)gk2
(µ)f(µ)dµ, where the form of

f is given in Proposition 4.2 and and derivation is delayed
in Appendix E. Combining Definition 4.1, we soonly get:

Proposition 4.2 (Exact weight function of optimal
basis). The optimal polynomial basis in Definition
4.1 is orthonormal w.r.t. weight function f , where
f(µ) = △F (µ)

△µ , with F (µ) :=
∑

µi≤µ(U
Tx)2i .

Unachievable Algorithm Towards Optimal Basis. Now
we illustrate why Wang & Zhang (2022) believe that though
properly defined, this optimal basis is unachievable, and
how they took a step back to get their final model. We sum-
marize the process they thought of in Algorithm 3. This
process is quite habitual: with the weight function in Propo-

4



Graph Neural Networks with Learnable and Optimal Polynomial Bases

Algorithm 3: (An Unreachable Algorithm for Utilizing
Optimal Basis)

Input: Graph signal x; Normalized graph adjacency P̂ ;
Truncated polynomial order K

Output: Optimal basis {gk(·)}Kk=0

1 U, {µi}Ni=1 ← Eigendecomposition of P̂
2 Calculate f(µ) as descripted in Proposition 4.2
3 Use Gram-Schmidt process and weight function

f(µ) to contruct an orthonormal basis {gk}Kk=0

4 Apply {gk}Kk=0 in polynomial filtering

sition 4.2 solved, it is natural to use it to determine the
first K polynomials by the Gram-Schmidt process and then
use the solved polynomials in filtering as other bases, e.g.
Chebyshev polynomials. This process is unreachable due
to the eigendecomposition step, which is essential for the
calculation of f (see Proposition 4.2), but prohibitively ex-
pensive for larger graphs.

As a result, Wang & Zhang (2022) came up with a com-
promise. They allow their model, namely JacoviConv, to
choose from the family of orthogonal Jacobi bases, who
have ”flexible enough weight functions”, i.e., (1− µ)a(1 +
µ)b (∀a, b ∈ (0, 1)). In their implementation, a and b are
discretized and chosen via hyperparameter tuning. Obvi-
ously, the fraction of possible weight functions JacoviConv
can cover is still small, very possibly missing the optimal
weight function in Proposition 4.2.

4.2. OptBasisGNN

In this section, we show how the polynomial filter can em-
ploy the optimal basis in Definition 4.1 efficiently via an
innovative O(K|E|) methodology. Our method does not
follow the convention in Algorithm 3 where four progressive
steps are included to solve the optimal polynomial bases out
and utilize them. Instead, our solution to the optimal bases
is implicit, accompanying the process of solving a related
vector series. Thus, our method bypasses the untractable
eigendecomposition step.

Optimal Vector Basis with Accompanying Polynomials.
Still, we consider graph signal filtering on one channel,
that is, x → z =

∑K
k=0 αkgk(P̂ )x. Instead of taking the

matrix polynomial b(P̂ ) =
∑K

k=0 αkgk(P̂ ) as a whole, we
now regard {vk|vk := gk(P̂ )x}Kk=0 as a vector basis. Then
the filtered signal z is a linear combination of the vector

basis, namely x→ z =
∑K

k=0 αkvk (5) . When {gk}Kk=0

meets Definition 4.1, for all k1, k2 ∈ [0,K], the vector basis
satisfies:

vTk2
vk1

= xTgk2
(P̂ )gk1

(P̂ )x = δk1k2
. (6)

Algorithm 4: OPTBASISFILTERING
1. In the comment, we write the implicitly undergoing process
of obtaining the accompanying optimal polynomial basis.
2. Steps 1-3 will be further substituted by Algorithm 5 after
the derivative of Proposition 4.4.

Input: Input signals X with d channels; Normalized
graph adjacency P̂ ; Order K

Learnable Parameters :α
Output: Filtered signals Z

1 for l = 0 to d− 1 do
2 x← X:,l

3 v0 ← x/∥x∥ ; // g0(µ) = 1/∥x∥

4 z ← α0,lv0
5 for k = 0 to K do
6 Step 1: v∗k+1 ← P̂ vk ; // g∗k+1(µ) := µgk(µ)

7 Step 2: v⊥k+1 ← v∗k+1 −
∑k

i=0⟨v∗k+1, vi⟩vi ;
// g⊥k+1(µ) := g∗k+1(µ) − ∑k

i=0⟨v∗
k+1, vi⟩gi(µ)

8 Step 3: vk+1 ← v⊥k+1/∥v⊥k+1∥ ;
// gk+1(µ) := g⊥k+1(µ)/∥v⊥

k+1∥

9 z ← z + αk+1,lvk+1

10 Z:,l ← z

11 return Z

Given (P̂ , x), we term gk the accompanying polynomial
of a vector vk if vk = gk(P̂ )x. Note that an accompanying
polynomial does not always exists for any vector. Follow-
ing Equation (6), finding the optimal polynomial basis for
filtering is equivalent to finding a vector basis {vk}Kk=0

that satisfies two conditions: Condition 1: Orthonormal-
ity; Condition 2: Accompanied by the optimal polynomial
basis, that is, vk ≡ gk(P̂ )x establishes for each k, where
gk follows Definition 4.1. We term such {vk} the optimal
vector basis.

When focusing solely on Condition 1, one can readily think
of the fundamental Gram-Schmidt process, which generates
a sequence of orthonormal vectors through a series of iter-
ative steps: each subsequent basis vector is derived by 1)
orthogonalization with respect to all the previously obtained
vectors, and 2) normalization.

Moreover, with a slight generalization, Condition 2 can
also be met. As illustrated in our OPTBASISFILTERING
algorithm (Algorithm 11), besides Steps 2-3 taken directly
from the Gram-Schmidt process to ensure orthonormality,
there is an additional Step 1 that guarantees the existence
of the subsequent accompanying polynomial. To show this,
we can write out the accompanying polynomial in each step.
Inductively, assuming that the accompanying polynomials
for the formerly obtained basis vectors are g0, · · · , gk, we
can observe immediately from the algorithmic flow that the

5
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Algorithm 5: OBTAINNEXTBASISVECTOR

Input: Normalized graph adjacency P̂ ; Two solved
basis vectors vk−1, vk (k ≥ 0)

Output: vk+1

1 Step 1: v∗k+1 ← P̂ vk
2 Step 2:

v⊥k+1 ← v∗k+1−⟨v∗k+1, vk⟩vk−⟨v∗k+1, vk−1⟩vk−1

3 Step 3: vk+1 ← v⊥k+1/∥v⊥k+1∥
4 return vk+1

(k + 1)-th accompanying polynomial is

gk+1(µ) :=
(
µgk(µ)−

k∑
i=0

⟨v∗k, vi⟩gi(µ)
)
/∥v⊥k+1∥, (7)

with g0(µ) = 1/∥x∥ as the initial step. Since for each
(k1, k2), xTgk2(P̂ )gk1(P̂ )x = vTk1

vk2 = δk1k2 establishes,
the sequence g0, · · · , gK is exactly the optimal basis in Defi-
nition 4.1. Thus, by solving the vectors in the optimal vector
basis in order and at the same time apply them in filtering
by Equation (5), we can make implicit yet exact use of
the optimal polynomial basis. Thus, we can make implicit
and exact use of the optimal polynomial basis via solving
the optimal vector basis and applying them by Equation (5).
The cost, due to the recursive conducting over Step 2 until
vK is obtained, is in total O(K|E|+K2|V |).
Remark 4.3. It is revealed by Equation (7) that we have in
fact provided an alternative solution to the optimal basis.
However, notice that we never need to explicitly compute
the polynomial series.

Achieving O(K|E|+K|V |) Time Complexity. We can
further reduce the cost to O(K|E| + K|V |) by Proposi-
tion 4.4, which shows that in Step 2, instead of subtracting
all the former vectors, we just need to subtract vk and vk−1

from v∗k+1.

Proposition 4.4. In Algorithm 11, v∗k+1 is only den-
pendent with vk and vk−1.

Proof. Please check Appendix B.6.
Remark 4.5. The proof is hugely inspired by the core proof
part of the Theorem B.1 (Appendix B.1, the three-term
recurrences theorem for orthogonal polynomials), which
shows that xpk(x)is only relevant to pk+1(x), pk(x) and
pk−1(x). The difference is just a shift of consideration of
the inner-product space from polynomials to vectors.

By Proposition 4.4, we substitute Steps 1-3 in Algorithm 11
by Algorithm 5. Note that we define v−1 := 0⃗, g−1(µ) := 0
for consistency and simplicity of presentation. The im-
proved OPTBASISFILTERING algorithm serves as the core
part of the complete OptBasisGNN. The processes on all

channels are conducted in parallel. Please check the Pytorch-
style pseudo-code in Appendix C.2.

4.3. More on the Implicitly Solved Polynomial Basis

This section is a more in-depth discussion about the nature
of our method, that is, we implicitly determine the optimal
polynomials by three-term recurrence relations rather than
the weight function.

We begin with a lemma. The proof can be found in Ap-
pendix B.7.
Lemma 4.6. In Algorithm 5, ∥v⊥k ∥ = ⟨v∗k+1, vk−1⟩ .

This lemma soonly leads to the following theorem.2

Theorem 4.7 (Three-term Recurrences of Accom-
panying Polynomials (Informal)). The process for
deriving the vector basis correspondingly defines
the optimal polynomial basis through the following
three-term relation:

∥v⊥k+1∥ gk+1(µ) = (µ− ⟨v∗k+1, vk⟩)gk(µ)

− ∥v⊥k ∥ gk−1(µ),

g−1(µ) := 0, g0(µ) = 1/∥x∥,
k = 0, · · · ,K−1.

Proof. Combining Proposition 4.4, the accompanyingly de-
rived basis polynomial in Equation (7) comes to

∥v⊥k+1∥gk+1(µ) = µgk(µ)−
k∑

i=k−1

⟨v∗k+1, vi⟩gk(µ).

By employing Lemma 4.6 on the right-hand side and staking
the steps, the proof is completed.

This implicit recurring relation revealed in Theorem 4.7
perfectly matches the three-term formula in Equation (3)
if we substitute ∥v⊥k ∥ by

√
βk, and ⟨v∗k+1, vk⟩ by γk. This

is guaranteed by the orthonormality of the optimal basis
(Proposition 4.2) and the three-term recurrence formula
that constrains any orthonormal polynomial series (Theo-
rem 3.2). From this perspective, OptBasisGNN is a particu-
lar case of FavardGNN. FavardGNN is possible to reach the
whole space of orthonormal bases, among which OptBasis-
GNN employs the ones that promise optimal convergence
property.

Let us recall the Favard’s theorem (Theorem 3.1) and three-
term recurrence theorem (Theorem 3.2) from a different per-
spective: An orthonormal polynomial series can be defined
either through a weight function or a recurrence relation of
a specific formula. We adopt the latter definition, bypassing

2Here, x is the input signal.
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the need for eigendecomposition as a prerequisite for the
weight function. Moreover, our adoption of such a way of
definition is hidden behind the calculation of vector basis.

Algorithm 6: OPTBASISFILTERING

Input: Input signals X with d channels; Normalized
graph adjacency P̂ ; Order K

Learnable Parameters :α
Output: Filtered signals Z

1 v−1 ← 0
2 for l = 0 to d− 1 do
3 x← X:,l , v0 ← x/∥x∥ , z ← α0,lv0
4 for k = 0 to K do
5 vk+1 ←OBTAINNEXTBASISVECTOR(P̂ ,vk,

vk−1)
6 z ← z + αk+1,lvk+1

7 Z:,l ← z

8 return Z

4.4. Scale Up OptBasisGNN

By slightly generalizing OptBasisGNN, it becomes feasible
to scale it up for significantly larger graphs, such as ogbn-
papers100M(Hu et al., 2020). This follows the approach
of previous works that achieve scalability in GNNs by de-
coupling feature propagation from transformation (Chen
et al., 2020a; Wu et al., 2019; He et al., 2022). We make
several modifications to OptBasisGNN. First, we remove
the MLP layer before OPTBASISFILTERING, resulting in
the optimal basis vectors for all channels being computed
in just one pass. Second, we preprocess the entire set of
basis vectors (V ∈ Rd×(K+1)×N ) on CPU. Third, we adopt
batch training, where for each batch of nodes B, the corre-
sponding segment of basis vectors V [:, :,B] is transferred to
the GPU.

5. Experiments
In this section, we conduct a series of comprehensive ex-
periments to demonstrate the effectiveness of the proposed
methods. Experiments consist of node classification tasks
on small and large graphs, the learning of multi-channel
filters, and a comparison of FavardGNN and OptBasisGNN.

5.1. Node Classification

Experimental Setup. We include medium-sized graph
datasets conventionally used in preceding graph filtering
works, including three heterophilic datasets (Chameleon,
Squirrel, Actor) provided by Pei et al. (2020) and two ci-
tation datasets (PubMed, Citeseer) provided by Yang et al.
(2016) and Sen et al. (2008) . For all these graphs, we take

a 60%/20%/20% train/validation/test split proportion fol-
lowing former works, e.g. Chien et al. (2021). We report
our results of twenty runs over random splits with random
initialization seeds. For baselines, we choose sota spec-
tral GNNs. For other experimental settings, please refer to
Appendix D.1. Besides, for evaluation of OptBasisGNN,
please also check the results in the scalability experimental
section (Section 5.2).

Results. As shown in Table 1, FavardGNN and OptBa-
sisGNN outperform most strong baselines. Especially, in
Chameleon, Squirrel and Actor, we see a big lift. The vast
selection range and learnable nature of FavardGNN and the
optimality of convergence provided by OptBasisGNN both
enhance the performance of polynomial filters, and their
performances hold flat.

5.2. Node Classification on Large Datasets

Experimental Setup. We perform node classification
tasks on two large citation networks: ogbn-arxiv and ogbn-
papers100M (Hu et al., 2020), and five large non-homophilic
networks from the LINKX datasets (Lim et al., 2021) . Ex-
cept for Penn94, Genius and Twitch-Gamers, all other men-
tioned datasets use the scaled version of OptBasisGNN.

For ogbn datasets, we run repeating experiments on the
given split with ten random model seeds, and choose base-
lines following the scalability experiments in ChebNetII
(He et al., 2022). For LINKX datasets, we use the five
given splits to align with other reported experiment results
for Penn94, Genius, Twitch-Gamer and Pokec. For Wiki
dataset, since the splits are not provided, we use five random
splits. For baselines, we choose spectral GNNs as well as
top-performing spatial models reported by Lim et al. (2021),
including LINK, LINKX, GCNII (Chen et al., 2020b) and
MixHop (Abu-El-Haija et al., 2019). For more detailed
experimental settings, please refer to Appendix D.1.

Results. As shown in Table 2 and Table 3, On Penn94,
Genius and Twitch-gamer, our two models achieve compa-
rable results to those of the state-of-the-art spectral methods.
On ogbn datasets as well as Pokec and Wiki with tens or
hundreds of millions of edges, we use the scaled version
of OptBasisGNN with batch training. We do not conduct
FavardGNN on these datasets, since the basis vectors of
FavardGNN cannot be precomputed. Notably, on Wiki
dataset, the largest non-homophilous dataset, our method
surpasses the second top method by nearly one percent, this
demonstrates the effectiveness of our scaled-up version of
OptBasisGNN.

5.3. Learning Multi-Channel Filters from Signals

Experimental Setup. We extend the experiment of learn-
ing filters conducted by He et al. (2021) and Balcilar et al.
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Table 1. Experimental results. Accuracies ± 95% confidence intervals are displayed for each model on each dataset. The best-performing
two results are highlighted. The results of GPRGNN are taken from He et al. (2021). The results of BernNet, ChebNetII and JacobiConv are
taken from original papers. The results of FavardGNN and OptBasisGNN are the average of repeating experiments over 20 cross-validation
splits.

Dataset Chameleon Squirrel Actor Citeseer Pubmed
∥V ∥ 2,277 5,201 7,600 3,327 19,717
H(G) .23 .22 .22 .74 .80

MLP 46.59 ± 1.84 31.01 ± 1.18 40.18 ± 0.55 76.52 ± 0.89 86.14 ± 0.25
GCN (Kipf & Welling, 2017) 60.81 ± 2.95 45.87 ± 0.8 33.26 ± 1.15 79.85 ± 0.78 86.79 ± 0.31
ChebNet (Defferrard et al., 2016) 59.51 ± 1.25 40.81 ± 0.42 37.42 ± 0.58 79.33 ± 0.57 87.82 ± 0.24
ARMA (Bianchi et al., 2021) 60.21 ± 1.00 36.27 ± 0.62 37.67 ± 0.54 80.04 ± 0.55 86.93 ± 0.24
APPNP (Klicpera et al., 2019) 52.15 ± 1.79 35.71 ± 0.78 39.76 ± 0.49 80.47 ± 0.73 88.13 ± 0.33
GPR-GNN (Chien et al., 2021) 67.49 ± 1.38 50.43 ± 1.89 39.91 ± 0.62 80.13 ± 0.84 88.46 ± 0.31
BernNet (He et al., 2021) 68.53 ± 1.68 51.39 ± 0.92 41.71 ± 1.12 80.08 ± 0.75 88.51 ± 0.39
ChebNetII (He et al., 2022) 71.37 ± 1.01 57.72 ± 0.59 41.75 ± 1.07 80.53 ± 0.79 88.93 ± 0.29
JacobiConv (Wang & Zhang, 2022) 74.20 ± 1.03 57.38 ± 1.25 41.17 ± 0.64 80.78 ± 0.79 89.62 ± 0.41

FavardGNN 72.32 ± 1.90 63.49 ± 1.47 43.05 ± 0.53 81.89 ± 0.63 90.90 ± 0.27
OptBasisGNN 74.26 ± 0.74 63.62 ± 0.76 42.39 ± 0.52 80.58 ± 0.82 90.30 ± 0.19

Table 2. Experimental results of large-scale datasets (non-homophilous). Accuracies ± standard errors are displayed for each model on
each dataset. The best-performing two results are highlighted. Results of BernNet and ChebNet are taken from He et al. (2022). Other
results are from Lim et al. (2021). Note that for the large Pokec and Wiki datasets, we use the scaled-up version of OptBasisGNN, which
is introduced in Section 4.4.

Dataset Penn94 Genius Twitch-Gamers Pokec Wiki
∥V ∥ 41,554 421,961 168,114 1,632,803 1,925,342
∥E∥ 1,362,229 984,979 6,797,557 30,622,564 303,434,860
H(G) .470 .618 .545 .445 .389

MLP 73.61 ± 0.40 86.68 ± 0.09 60.92 ± 0.07 62.37 ± 0.02 37.38 ± 0.21
GCN (Kipf & Welling, 2017) 82.47 ± 0.27 87.42 ± 0.31 62.18 ± 0.26 75.45 ± 0.17 OOM
GCNII (Chen et al., 2020b) 82.92 ± 0.59 90.24 ± 0.09 63.39 ± 0.61 78.94 ± 0.11 OOM
MixHop (Abu-El-Haija et al., 2019) 83.47 ± 0.71 90.58 ± 0.16 65.64 ± 0.27 81.07 ± 0.16 49.15 ± 0.26
LINK (Lim et al., 2021) 80.79 ± 0.49 73.56 ± 0.14 64.85 ± 0.21 80.54 ± 0.03 57.11 ± 0.26
LINKX (Lim et al., 2021) 84.71 ± 0.52 90.77 ± 0.27 66.06 ± 0.19 82.04 ± 0.07 59.80 ± 0.41
GPR-GNN (Chien et al., 2021) 83.54 ± 0.32 90.15 ± 0.30 62.59 ± 0.38 80.74 ± 0.22 58.73 ± 0.34
BernNet (He et al., 2021) 83.26 ± 0.29 90.47 ± 0.33 64.27 ± 0.31 81.67 ± 0.17 59.02 ± 0.29
ChebNetII (He et al., 2022) 84.86 ± 0.33 90.85 ± 0.32 65.03 ± 0.27 82.33 ± 0.28 60.95 ± 0.39

FavardGNN 84.92 ± 0.41 90.29 ± 0.14 64.26 ± 0.12 - -
OptBasisGNN 84.85 ± 0.39 90.83 ± 0.11 65.17 ± 0.16 82.83 ± 0.04 61.85 ± 0.03

(2021). The differences are twofold: First, we consider the
case of multi-channel input signals and learn filters chan-
nelwisely. Second, the only learnable parameters are the
coefficients α. Note that the optimization target of this ex-
periment is identical to how the optimal basis was derived
by Wang & Zhang (2022) (See Section 4.1).

We put the practical background of our multichannel ex-
periment in YCbCr color space. Each 100× 100 image is
considered as a grid graph with input node signals on three
channels: Y, Cb and Cr. Each signal might be filtered by
complex filtering operations defined in (He et al., 2021). As
shown in Table 4, using different filters on each channel re-
sults in different combination effects. We create a synthetic
dataset with 60 samples from 15 original images. More
about the synthetic dataset are in Appendix D.2.

Following He et al. (2021), we use input signals X and the
true filtered signals Y to supervise the learning process of
α. The optimization goal is to minimize 1

2∥Z−Y ∥22, where
Z is the output multi-channel signal defined in Equation (2).
During training, we use an Adam optimizer with a learning
rate of 0.1 and a weight decay of 5e−4. We allow a maxi-
mum of 500 epochs, and stop iteration when the difference

of losses between two epochs is less than 1e−4.

For baselines, we choose the Monomial basis, Bernstein
basis, Chebyshev basis (with Chebyshev interpolation) cor-
responding to GPR-GNN, BernNet and ChebNetII, respec-
tively. We also include arbitrary orthonormal basis learned
by Favard for comparison. Note that, we learn different
filters on each channel for all baseline basis for fairness.

Results. We exhibit the mean MSE losses with standard er-
rors of the 60 samples achieved by different bases in Table 5.
Optbasis, which promises the best convergence property,
demonstrates an overwhelming advantage. A special note is
needed that, the Monomial basis has not finished converging
at the maximum allowed 500th epoch. In Section 5.4, we
extend the maximum allowed epochs to 10,000, and use the
slowly-converging Monomial basis curve as a counterpoint
to the non-converging Favard curve.

Particularly, in Figure 2, we visualize the converging pro-
cess on one sample. Obviously, OptBasis show best con-
vergence property in terms of both the fastest speed and
smallest MSE error. Check Appendix D.2 for more samples.

8



Graph Neural Networks with Learnable and Optimal Polynomial Bases

Table 3. Experimental results of large-scale datasets (ogbn-
citation datasets). Accuracies ± 95% standard errors are dis-
played. Besides OptBasisGNN, all the reported results are taken
from ChebNetII. The dash line in BernNet means failing in prepro-
cessing basis vectors in 24 hrs. Fixed splits of train/validation/test
sets are used. 10 random model seeds are used for repeating exper-
iments.

Dataset ogbn-arxiv ogbn-papers100M
∥V ∥ 169,343 111,059,956
∥E∥ 1,166,243 1,615,685,872
H(G) 0.66 -

GCN (Kipf & Welling, 2017) 71.74 ± 0.29 OOM
ChebNet (Defferrard et al., 2016) 71.12 ± 0.22 OOM
ARMA (Bianchi et al., 2021) 71.47 ± 0.25 OOM
GPR-GNN (Chien et al., 2021) 71.78 ± 0.18 65.89 ± 0.35
BernNet (He et al., 2021) 71.96 ± 0.27 −
SIGN (Frasca et al., 2020) 71.95 ± 0.12 65.68 ± 0.16
GBP (Chen et al., 2020a) 71.21 ± 0.17 65.23 ± 0.31
NDLS* (Zhang et al., 2021) 72.24 ± 0.21 65.61 ± 0.29
ChebNetII (He et al., 2022) 72.32 ± 0.23 67.18±0.32

OptBasisGNN 72.27 ± 0.15 67.22 ± 0.15

Table 4. Illustration of our multichannel filter learning experiment.
Original Image Y: Band Reject

Cb: :Low pass
Cr: High Pass

Y: Low Pass
Cb: Band Reject
Cr: Band Reject

5.4. Non-Convergence of FavardGNN

Notably, in Figure 2, an obvious bump appeared near the
130th epoch. We now re-examine the non-convergence
problem of FavardGNN (Section 3.3). We rerun the multi-
channel filter learning task by canceling early stopping and
stretching the epoch number to 10,000. As shown in Fig-
ure 3 (left), the curve of Favard bump several times. In
contrast with Favard is the Monomial basis, though showing
an inferior performance in Table 5, it converges slowly but
stably. We observe a similar phenomenon with a node clas-
sification setup in Figure 3 (right) (See Appendix D.3 for
details). Still, very large bumps appear. Such a phenomenon
might seem contradictory to the outstanding performance of
FavardGNN in node classification tasks. We owe the good
performances in Table 1 and 2 to the early stop mechanism.

6. Conclusion
In this paper, we tackle the fundamental challenges of basis
learning and computation in polynomial filters. We propose
two models: FavardGNN and OptBasisGNN. FavardGNN

Table 5. Experimental results of the multichannel filtering learning
task. MSE loss ± standard errors of the 60 samples achieved by
different bases are exhibited.

BASIS OptBasis ChebII Bernstein Favard Monomial

MSE
± STDV

0.0058
± 0.0157

0.1501
± 0.2433

0.4231
± 0.4918

0.3175
± 0.2840

3.9076
± 2.9263
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Figure 2. Convergence rate of minimizing 1
2
∥Z − Y ∥22 on one

sample. Sample message: The true filters for this sample are
low-pass(Y) / band-reject(Cb) / band-reject(Cr). Legends: ChebII
means using Chebyshev polynomials combined with interpolation
on chebynodes as in ChebNetII (He et al., 2022). Favard means the
bases are learned as FavardGNN. In 500 epochs, the experimental
groups of the Monomial basis and Bernstein basis did not converge.
OptBasis achieves the smallest MSE error in the shortest time.
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Figure 3. Drop of loss in 10,000 epochs. Left: MSE loss of re-
gression task on one sample. Right: Cross entropy loss of clas-
sification problem on the Chameleon dataset. Models based on
Monomial basis converge slowly, but stably. while FavardGNNs
don’t converge. For the convergence curve for OptBasis, please
check Figure 2. It converges much faster than Monomial Basis.

learns arbitrary basis from the whole space of orthonor-
mal polynomials, which is rooted in classical theorems in
orthonormal polynomials. OptBasisGNN leverages the op-
timal basis defined by Wang & Zhang (2022) efficiently,
which was thought unsolvable. Extensive experiments are
conducted to demonstrate the effectiveness of our proposed
models. An interesting future direction is to derive a convex
and easier-to-optimize algorithm for FavardGNN.
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A. Notations

Table 6. Summation of notations in this paper.

Notation Description
G = (V,E) Undirected, connected graph
N Number of nodes in G

P̂ Symmetric-normalized adjacency matrix of G.
L̂ Normalized Laplacian matrix of G. L̂ = I − P̂ .
λi The i-th eigenvalue of L̂.
µi The i-th eigenvalue of P̂ . µi = 1− λi.

U Eigen vectors of L̂ and P̂ .

x Input signal on 1 channel.
X ∈ RN×d Input features / Input signals on d channels.
Z ∈ RN×d Filtered signals.
h(·), b(·) Filtering function defined on L̂ and P̂ , respectively. h(λ) ≡ b(1− λ).

hi(·), bi(·) Filtering function on the ith signal channel. Xi,: = hi(L̂)Zi,:.
h(L̂)x, b(P̂ )x Filtering operation on signal x. h(L̂) ≡ b(P̂ ).

{gk(·)}Kk=0 A polynomial basis of truncated order K.
{αk}Kk=0 Coefficients above a basis. i.e. h(λ) ≈∑K

k=0 αkgk(λ).

B. Proofs
Most subsections here are for the convenience of interested readers. We provided our proofs about the theorems (except
for the original form of Favard’s Theorem) and their relations used across our paper, although the theorems can be found
in early chapters of monographs about orthogonal polynomials (Gautschi, 2004; Simon, 2014). We assume a relatively
minimal prior background in orthogonal polynomials.

B.1. Three-term Recurrences for Orthogonal Polynomials (With Proof)

Theorem B.1 (Three-term Recurrences for Orthogonal Polynomials). (Simon, 2005, p. 12) For any orthogonal
polynomial series {pk(x)}∞k=0, suppose that the leading coefficients of all polynomial are positive, the series satisfies the
recurrence relation:

pk+1(x) = (Akx+Bk)pk(x) + Ckpk−1(x),

p−1(x) := 0, Ak, Ck ∈ R+, Bk ∈ R, k ≥ 0.

Proof. The core part of this proof is that xpk is orthogonal to pi for i ≤ k − 2, i.e.

⟨xpk, pi⟩ = 0, i ≤ k − 2.

Since xpk(x) is of order k + 1, we can rewrite xpk(x) into the combination of first k + 1 polynomials of the basis:

xpk(x) = αk,k+1pk+1(x) + αk,kpk(x) + ak,k−1pk−1(x) + · · ·+ αk,0p0(x) (8)

or in short,

xpk(x) =

0∑
j=k+1

αk,jpj(x).

Project each term onto pi(x),

⟨xpk(x), pi(x)⟩ =
0∑

j=k+1

αk,j⟨pj(x), pi(x)⟩.
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Using the orthogonality among {pk(x)}∞k=0, we have

⟨xpk(x), pi(x)⟩ = ⟨αk,ipi(x), pi(x)⟩ ⇒ αk,i =
⟨xpk(x), pi(x)⟩
⟨pi(x), pi(x)⟩

. (9)

Next, we show ⟨xpk(x), pi(x)⟩ = 0 when i ≤ k − 2. Since ⟨xpk(x), pi(x)⟩ ≡ ⟨pk(x), xpi(x)⟩, it is equivalent to show
⟨pk(x), xpi(x)⟩ = 0.

When i ≤ k − 2, applying xpi(x) =
∑i+1

j=0 αi,jpj(x) and the orthogonality between pj(x) and pk(x) when j ̸= k, we get

⟨pk, xpi(x)⟩ =
i+1∑
j=0

αi,j⟨pk, pj(x)⟩ j≤k−1
= 0⇒ ⟨xpk, pi(x)⟩ = 0.

Therefore, xpk(x)is only relevant to pk+1(x), pk(x) and pk−1(x). By shifting items, we soonly get that: pk+1(x)is only
relevant to xpk(x), pk(x) and pk−1(x).

At last, we show that, by regularizing the leading coefficients Ak to be positive, Ck > 0. Firstly, since the leading coefficients
are positive, {αk}∞k=0 defined in Equation (8) are positive. Then, notice from Equation (9), we get

−Ck

Ak
= αk,k−1 =

⟨xpk(x), pk−1(x)⟩
⟨pk−1(x), pk−1(x)⟩

=
⟨pk(x), xpk−1(x)⟩
⟨pk−1(x), pk−1(x)⟩

=
αk−1,k

⟨pk−1(x), pk−1(x)⟩
.

We have finished our proof.

B.2. Favard’s Theorem (Monomial Case)

Theorem B.2 (Favard’s Theorem). (Favard, 1935) If a sequence of monic polynomials {Pn}∞n=0 satisfies a three-term
recurrence relation

Pn+1(x) = (x− γn)Pn(x)− βnPn−1(x),

with γn, βn ∈ R, βn > 0, then {Pn}∞n=0 is orthogonal with respect to some positive weight function.

B.3. Favard’s Theorem (General Case) (With Proof)

Corollary B.3 (Favard’s Theorem; general case). If a sequence of polynomials {Pn}∞n statisfies a three-term recurrence
relation

Pn+1(x) = (ςnx− γn)Pn(x)− βnPn−1(x),

with γn, βn, ςn ∈ R, ςn ̸= 0, βn/ςn > 0, then there exists a positive weight function w such that {Pn}∞n=0 is orthogonal
with respect to the inner product ⟨p, q⟩ =

∫
R p(x)q(x)w(x)dx.

Proof. Set γ∗
n = αn

ςn
, β∗

n = βn

ςn
. Then we can construct a sequence of polynomials {P ∗

n}∞n .

Case 1: For n = 0 and n = 1, set P ∗
n := Pn(x)/P̂n(x) .

Case 2: For n ≥ 2, define P ∗
n(x) by the three-term recurrences:

P ∗
n+1(x) := (x− γ∗

n)P
∗
n(x)− β∗

nP
∗
n−1(x).

According to Theorem B.2, {P ∗
n}n is an orthogonal basis. Since Pn is scaled P ∗

n by some constant, so {Pn}n is also
orthogonal.

B.4. Proof of Theorem 3.1

We restate the Theorem of three-term recurrences for orthonormal polynomials (Theorem 3.1) as below, and give a proof.
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(Three Term Recurrences for Orthonormal Polynomials) For orthonormal polynomials {pk}∞k=0 w.r.t. weight function
w, suppose that the leading coefficients of all polynomial are positive, there exists the three-term recurrence relation:√

βk+1pk+1(x) = (x− γk)pk(x)−
√
βkpk−1(x),

p−1(x) := 0, p0(x) = 1/
√

β0, γk ∈ R,
√
βk ∈ R+, k ≥ 0

with β0 =
∫
w(x)dx.

Proof. Case 1: k = 0. pk(x) is a constant. Suppose it to be t, then

⟨p0(x), p0(x)⟩ = t2
∫ b

a

dα⇒ t = 1/
√

β0.

Case 2: k ≥ 1. By Theorem B.1, since {pk}Kk=0 is orthogonal, there exist three term recurrences as such:

pk+1(x) = (Akx+Bk)pk(x) + Ckpk−1(x), k = 1, 2, 3, . . . .

By setting c∗k =
1

Ak
, a∗k = −Bk

Ak
, b∗k = −Ck

Ak
, it can be rewritten into

c∗kpk+1(x) = (x− a∗k)pk(x)− b∗kpk−1(x), k = 1, 2, 3, . . . . (10)

Apply dot products with pk−1(x) to Equation (10), we get

⟨xpk(x), pk−1(x)⟩ = ⟨b∗kpk−1(x), pk−1(x)⟩
⇒ b∗k = ⟨xpk(x), pk−1(x)⟩ (11)

(k = 1, 2, 3, . . .).

Similarly, apply dot products with pk+1(x), we get:

⟨c∗kpk+1(x), pk+1(x)⟩ = ⟨xpk(x), pk+1(x)⟩
⇒ c∗k = ⟨xpk(x), pk+1(x)⟩
⇒ c∗k = ⟨xpk+1(x), pk(x)⟩ (12)

(k = 1, 2, 3, . . .).

Notice that in Equation (12)
⟨xpk(x), pk+1(x)⟩ = ⟨pk(x), xpk+1(x)⟩ (11)

= b∗k+1.

We get:
c∗k = b∗k+1.

So we can write Equation (10) into the form below:

b∗k+1pk+1(x) = (x− a∗k)pk(x)− b∗kpk−1(x), k = 1, 2, 3, . . . .

At last, we show b∗k > 0.

Firstly, recall that b∗k = ⟨xpk(x), pk−1(x)⟩ = ⟨pk(x), xpk−1(x)⟩. Since xpk−1(x), which is of order k, can be written into
the combination of {pj}kj=0 which the leading coefficients to be non-zero, i.e.

xpk−1(x) = ak,kpk(x) + ak,k−1pk−1(x) + · · ·+ ak,0p0(x) (ak,k ̸= 0)

Secondly, since ⟨g(x), g(x)⟩ ≡ ⟨−g(x),−g(x)⟩, we can restrict all the leading coefficients to be positive.

b∗n = ⟨pk(x), xpk−1(x)⟩ = ak,k > 0.

Thus we have proved b∗k > 0 holds.

Furthermore, we can rewrite b∗k into
√
βk. The proof is finished.
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B.5. Proof of Theorem 3.2

We restate Favard’s Theorem for orthonormal polynomials (Theorem 3.2) as below, and give a proof based on the general
case B.3.

(Favard Theorem; Orthonormal case) A polynomial series {pk}∞k=0 who satisfies the recurrence relation√
βk+1pk+1(x) = (x− γk)pk(x)−

√
βkpk−1(x),

p−1(x) := 0, p0(x) = 1/
√
β0, γk ∈ R,

√
βk ∈ R+, k ≥ 0

is orthonormal w.r.t. a weight function w that β0 =
∫
w(x)dx.

Proof. First of all, according to Theorem 3.2, the series {pk}∞k=0 is orthogonal.

Apply dot products with pk−1(x), we get

⟨xpk(x), pk−1(x)⟩ =
〈√

βkpk−1(x), pk−1(x)
〉

⇒ ⟨xpk(x), pk−1(x)⟩ =
√

βk⟨pk−1(x), pk−1(x)⟩
(k = 0, 1, . . .).

Similarily, apply dot products with pk+1(x), we get:〈√
βk+1pk+1(x), pk+1(x)

〉
= ⟨xpk(x), pk+1(x)⟩

⇒
√
βk+1⟨pk+1(x), pk+1(x)⟩ = ⟨xpk(x), pk+1(x)⟩

(k = 0, 1, . . .),

which can be rewritten as: √
βk⟨pk(x), pk(x)⟩ = ⟨xpk−1(x), pk(x)⟩

(k = 1, 2, . . .),

Notice that
⟨xpk−1(x), pk(x)⟩ = ⟨xpk(x), pk−1(x)⟩.

We get: √
βk⟨pk(x), pk(x)⟩ = ⟨xpk−1(x), pk(x)⟩

=
√

βk⟨pk−1(x), pk−1(x)⟩
⇒ ⟨pk(x), pk(x)⟩ = ⟨pk−1(x), pk−1(x)⟩

(k = 1, 2, . . .),

which indicates that the polynomials {pk}Kk=0 are same in their norm.

Since p0(x) ≡ 1/
√
β0 and β0 =

∫
w(x)dx, ⟨p0(x), p0(x)⟩ =

1

β0

∫
w(x)dx =1. Thus the norm of every polynomial in

{pk}∞k=0 equals 1.

Combining that {pk}∞k=0 is orthogonal and ⟨pk(x), pk(x)⟩ = 1 for all k, we arrive that {pk}∞k=0 is an orthonormal basis.
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B.6. Proof of Proposition 4.4

Proof. First, from the construction of each vi+1 (Algorithm 11, k = i), we know that vi+1 is composed of {vj}j=i
j and

P̂ vi. Therefore, P̂ vi can be expressed as a weighted sum of {vj}i+1
j=0, denoted as P̂ vi = ti+1vi+1 + tivi + · · ·+ t0v0 (13).

Second, notice that ⟨P̂ vk, vi⟩ = vTk P̂ vi = ⟨vk, P̂ vi⟩ (14). Thus, for Step 2 in Algorithm 11, for each i ∈ [0, 1, · · · , k] we
can rephrase ⟨v∗k+1, vi⟩ by:

⟨v∗k+1, vi⟩
def
= ⟨P̂ vk, vi⟩ (14)

= ⟨vk, P̂ vi⟩

(13)
=

〈
vk,

i+1∑
j=0

tjvj

〉

=

i+1∑
j=0

tj⟨vk, vj⟩,

which equals 0 when i < k − 1.

B.7. Proof of Lemma 4.6

Proof. First, notice that
⟨v∗k+1, vk−1⟩ = ⟨P̂ vk, vk−1⟩ = ⟨vk, P̂ vk−1⟩.

On the other hand,
∥v⊥k+1∥ = ⟨vk+1, v

⊥
k+1⟩ = ⟨vk+1, v

∗
k+1⟩ = ⟨vk+1, P̂ vk⟩.

So, we get
∥v⊥k ∥ = ⟨vk, P̂ vk−1⟩ = ⟨P̂ vk, vk−1⟩ = ⟨v∗k+1, vk−1⟩.

Thus, we have finished our proof.
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C. Pseudo-codes
C.1. Pseudo-code for FavardGNN.

Algorithm 7: FavardGNN.Pytorch style.

# f: raw feature dimension
# d: hidden dimension, or number of channels
# N: number of nodes
# K: order of polynomial basis
# X(Nxd): Input features
# P(NxN): Sym-normalized adjacency matrix
# Coef(dx(K+1)): coefficient matrix
# SqrtBeta(dx(K+1)): Coefficients for three-term recurrences
# Gamma(dx(K+1)): Coefficients for three-term recurrences

# Transfer raw input in signals
X = ReLU(MLP(X.dropout())).dropout() # (Nxd)

SqrtBeta = torch.clamp(norm, 1e-2)

# Process H_0
H_0 = X / SqrtBeta[:,0] # (Nxd)

Z = torch.zeros_like(X)
# Add to the final representation
Z = Z + torch.einsum(’Nd,d->Nd’, H_0, Coef[:,0])

last_H = H_0
second_last_H = torch.zeros_like(H_0)

for k in range(1, K):
# Three-term Recurrence Formula for Orthonormal Polynomials
H_k = P @ last_H # (Nxd)
H_k = H_k - Gamma[k,:].unsqueeze(0)*last_H - SqrtBeta[k,:].unsqueeze(0)*second_last_H
H_k = H_k / SqrtBeta[k+1,:].unsqueeze(0)

# Add to the final representation
Z = Z + torch.einsum(’Nd,d->Nd’, H_k, Coef[:,k])

# Update variables
second_last_H = last_H
last_H = H_k

# Transform the final representation into predictions
Y = MLP(ReLU(Z).dropout())
Pred = Softmax(Y)
return Pred
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C.2. Pseudo-code for OptBasisGNN.

Algorithm 8: OptBasisGNN.Pytorch style.

# f: raw feature dimension
# d: hidden dimension, or number of channels
# N: number of nodes
# K: order of polynomial basis
# X(Nxd): Input features
# P(NxN): Sym-normalized adjacency matrix
# Coef(dxK): coefficient matrix

# Transfer raw input in signals
X = ReLU(MLP(X.dropout())).dropout() # (Nxd)

# Normalize H_0
norm = torch.norm(X, dim=0).view(1, d)
norm = torch.clamp(norm, 1e-8)
H_0 = X / norm # (Nxd)

Z = torch.zeros_like(X)
# Add to the final representation
Z = Z + torch.einsum(’Nd,d->Nd’, H_0, Coef[:,0])

last_H = H_0
second_last_H = torch.zeros_like(H_0)

for k in range(1, K):
H_k = P @ last_H # (Nxd)

# Orthogonalize H_k to all the former vectors
# To achieve this, only 2 substractions are required
project_1 = torch.einsum(’Nd,Nd->1d’, H_k, last_H) # (1xd)
project_2 = torch.einsum(’Nd,Nd->1d’, H_k, second_last_H) # (1xd)
H_k = H_k - project_1 * last_H - project_2 * second_last_H # (Nxd)

# Normalize H_k
norm = torch.norm(H_k, dim=0).view(1, d)
norm = torch.clamp(norm, 1e-8)
H_k = H_k / norm # (Nxd)

# Add to the final representation
Z = Z + torch.einsum(’Nd,d->Nd’, H_k, Coef[:,k])

# Update variables
second_last_H = last_H
last_H = H_k

# Transform the final representation to predictions
Y = MLP(ReLU(Z).dropout())
Pred = Softmax(Y)
return Pred

D. Experimental Settings.
D.1. Node Classification Tasks on Large and Small Datasets.

Model setup. The structure of FavardGNN and OptBasisGNN follow Algorithm 2. The hidden size of the first MLP
layers h is set to be 64, which is also the number of filter channels. For the scaled-up OptBasisGNN, we drop the first MLP
layer to fix the basis vectors needed for precomputing, and following the scaled-up version of ChebNetII (He et al., 2022),
we add a three-layer MLP with weight matrices of shape F × h, h× h and h× c after the filtering process.

For both models, the initialization of α is set as follows: for each channel l, the coefficients of the g0,l are set to be 1,
while the other coefficients are set as zeros, which corresponds to initializing the polynomial filter on each channel to be
h(λ) = 1− λ. For the initialization of three-term parameters that determine the initial polynomial bases on each channel,
we simply set {√β} to be ones, and {γ} to be zeros.

Hyperparameter tunning. For the optimization process on the training sets, we tune all the parameters with Adam
(Kingma & Ba, 2015) optimizer. We use early stopping with a patience of 300 epochs.

We choose hyperparameters on the validation sets. To accelerate hyperparameter choosing, we use Optuna(Akiba et al.,
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2019) to select hyperparameters from the range below with a maximum of 100 complete trials3:

1. Truncated Order polynomial series: K ∈ {2, 4, 8, 12, 16, 20};
2. Learning rates: {0.0005, 0.001, 0.005, 0.1, 0.2, 0.3, 0.4, 0.5};
3. Weight decays: {1e−8, · · · , 1e−3};
4. Dropout rates: {0., 0.1, · · · , 0.9};

There are two extra hyperparameters for scaled-up OptBasisGNN:

1. Batch size: {10, 000, 50, 000};
2. Hidden size (for the post-filtering MLP): {512, 1024, 2048}.

D.2. Multi-Channel Filter Learning Task.

YCbCr Channels. We put the practical background of our multichannel experiment in the YCbCr color space, a useful
color space in computer vision and multi-media (Shaik et al., 2015).

Our Synthetic Dataset. When creating our datasets with 60 samples, we use 4 filter combinations on 15 images in He
et al. (2021)’s single filter learning datasets. The 4 combinations on the three channels are:

1. Band-reject(Y) / low-pass(Cb) / high-pass(Cr);
2. High-pass(Y) / High-pass(Cb) / low-pass(Cr);
3. High-pass(Y) / low-pass(Cb) / High-pass(Cr);
4. Low-pass(Y) / band-reject(Cb) / band-reject(Cr).

The concrete definitions of the signals, i.e. band-reject are aligned with those given in He et al. (2022).

Visualization on more samples. We visualize more samples as Figure 2 in Figure 4. In all the samples, the tendencies of
different curves are alike.

D.3. Examining of FavardGNN’s bump.

Figure 3 (right), we observe bump with a node classification setup. To show this clearer, we let FavardGNN and GPR-GNN
(which uses the Monomial basis for classification) to fit the whole set of nodes, and move dropout and Relu layers. As in
the regression re-examine task, we cancel the earlystop mechanism, stretch the epoch number to 10,000, and record cross
entropy loss on each epoch.

E. Summary of Wang’s work
This section is a restate for a part of Wang & Zhang (2022). For the convenience of the reader’s reference, we write this
section here. More interested readers are encouraged to refer to the original paper.

Wang & Zhang (2022) raise a criterion for best basis, but states that it cannot be reached.

E.1. The Criterion for Optimal Basis

Following Xu et al. (2021), Wang & Zhang (2022) considers the squared loss R = 1
2∥Z − Y ∥2F, where Y is the target , and

Z = ∥
l∈[1,h]

∑K
k=0 αk,lgk,l(P̂ )X:,l . 4

Since each signal channel is independent and contributes independently to the loss, i.e. R =
∑

l
1
2∥Z:,l − Y:,l∥2F, we can

then consider the loss function channelwisely and ignore l. Loss on one signal channel x is:

r =
1

2
∥z − y∥2F,

3We use Optuna’s Pruner to drop some hyperparameter choice in an early stay of training. This is called an incomplete/pruned trial.
4Here, X is not necessarily the raw feature (Xraw) but often some thing like XrawW . W is irrelevant to the choice of polynomial basis,

and merges W into X .
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Figure 4. Visualization with more samples in the multi-channel filter learning task.
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where z =
∑K

k=0 αkgk(P̂ )x.

This loss is a convex function w.r.t. α. Therefore, the gradient descents’s convergence rate depends on the Hessian
matrix’s condition number, denoted as κ(H). When H is an identity matrix, κ(H) reaches a minimum and leads to the best
convergence rate (Boyd & Vandenberghe, 2009).

The Hessian matrix H looks like5:

Hk1k2
=

∂2r

∂αk1
∂αk2

= xTgk2
(P̂ )gk1

(P̂ )x.

Wang & Zhang (2022) further write Hk1k2 in the following form:

Hk1k2 = xT gk2(P̂ )gk1(P̂ )x =

n∑
i=1

gk1(µi)gk2(µi)(U
Tx)2i ,

which can be equivalently expressed as a Riemann sum:

N∑
i=1

gk1(µi)gk2(µi)
F (µi)− F (µi−1)

µi − µi−1
(µi − µi−1),

where F (µ) :=
∑

µi≤µ(U
Tx)2i . Define f(µ) = △F (µ)

△µ , Hk1k2 comes to

Hk1k2 =

∫ 1

µ=−1

gk1(µ)gk2(µ)f(µ)dµ.

This suggests that, {gk}Kk=0 is an optimal basis when it is orthonormal w.r.t. weight function f(·). (For more about
orthonormal basis, see Section 2.2.)

E.2. Wang’s Method

Having write out the weight function f(µ), the optimal basis is determined. Wang & Zhang (2022) think of a regular
process for getting this optimal basis, which is unreachable since eigendecomposition is unaffordable for large graphs. We
summarize this process in Algorithm 3.

According to Wang & Zhang (2022), the optimal basis would be an orthonormal basis, but unfortunately, this basis and the
exact form of its weight function is unattainable. As a result, they come up with a compromise by allowing the model to
choose from the orthogonal Jacobi bases, which have “flexible enough weight functions”, i.e. (1− µ)a(1 + µ)b. The Jacobi
bases are a family of polynomial bases. A specific form Jacobi basis is determined by two parameters (a, b). Similar to the
well-known Chebyshev basis, the Jacobi bases have a recursive formulation, making them efficient for calculation.

5Note that, Wang & Zhang (2022) define gk2 on L̂ (or {λi}) while we define it on P̂ (or {µi}). They are equivalent.
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