
Clenshaw Graph Neural Networks
Yuhe Guo

Renmin University of China

Beijing, China

guoyuhe@ruc.edu.cn

Zhewei Wei
∗

Renmin University of China

Beijing, China

zhewei@ruc.edu.cn

ABSTRACT
Graph Convolutional Networks (GCNs), which use a message-

passing paradigm with stacked convolution layers, are foundational

spatial methods for learning graph representations. Polynomial

filters, which have an advantage on heterophilous graphs, are mo-

tivated differently from the spectral perspective of graph convolu-

tions. Recent spatial GCN models use various residual connection

techniques to alleviate the model degradation problem such as

over-smoothing and gradient vanishing. However, current residual

connections do not effectively harness the full potential of polyno-

mial filters, which are commonly employed in the spectral domain

of GNNs.

In this paper, we introduce ClenshawGCN, a GNN model that

injects the characteristic of spectral models into spatial models by

a simple residual connection submodule: the Clenshaw residual

connection, which is essentially a second-order negative residual

combined with an initial residual. We show that a ClenshawGCN

implicitly simulates an arbitrary polynomial filter under the Cheby-

shev basis, since the iteration process of stacked (spatial) convo-

lutions equipped with Clenshaw residuals can be interpreted by

Clenshaw Summation Algorithm. In addition, we conduct compre-

hensive experiments to demonstrate the superiority of our model

over spatial and spectral GNN models. Our implementation is at

https://github.com/yuziGuo/KDDClenshawGNN.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence.

KEYWORDS
Graph Neural Networks, Residual Connection, Graph Polynomial

Filter

ACM Reference Format:
Yuhe Guo and Zhewei Wei. 2023. Clenshaw Graph Neural Networks. In

Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3580305.3599275

∗
Zhewei Wei is the corresponding author. The work was partially done at Gaoling

School of Artificial Intelligence, Peng Cheng Laboratory, Beijing Key Laboratory of

Big Data Management and Analysis Methods and MOE Key Lab of Data Engineering

and Knowledge Engineering.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599275

1 INTRODUCTION
The past few years have witnessed the rise of machine learning

on graphs, which considers relations (edges) between elements

(nodes) such as interactions among molecules [10, 38], friendship or

hostility between users [11, 51], and implicit syntactic or semantic

structure in natural language [39, 50]. Existing GNN models can

be broadly divided into two categories: spatial GNNs and spectral

GNNs.

Spatial GNNs [1, 20, 44, 58] employ a message-passing paradigm

to exploit the underlying graph topology by propagating node fea-

tures iteratively along the edges. Along with the message-passing

steps, each node receives information from glowingly expanding

neighborhoods. Such a propagation entangled with non-linear trans-
formation forms a (spatial) graph convolution layer in GCN.

Spectral GNNs [13, 41] define the Graph Convolution Operator

using the idea of Graph Fourier Transformation from Graph Signal

Processing. For computational traceability, most of the practical

spectral GNNs [6, 9, 15, 16, 47] use various polynomials filters to
approximate the Graph Convolution Operator. The two main fea-
tures shared by state-of-art polynomial filters [15, 16, 47] are:
(1) the ability to represent arbitrary functions; (2) the utilization of

polynomial basis for better approximation. Spectral GNNs have a

natural advantage on heterophilous graphs, where the homophily
assumption (i.e., connected nodes tend to have similar features or

same class labels) does not stand. For a more concrete background

of Spectral GNNs, please check Section 2.3.

Residual Connection in GNNs. One interesting and widely-

used submodule that often appears with graph convolution layers

is the residual connections, which is typically used to alleviate

the model degradation problem that occurs in deep models [14].

The mechanism of residual submodules can be simply described

as taking use of (typically by an add operation) the representa-

tions of the previous layers when iteratively obtaining representa-

tions for current layers. As shown Figure 1, we raw categorize

residual connections in GNNs into three types: (1) raw residu-
als [20] that are transplanted directly from ResNet [20] denoted

roughly as 𝑥 (ℓ+1) = 𝑓 (𝑥 (ℓ)) + 𝑥 (ℓ) ; (2) initial residuals [5, 21, 27,
55] adding back to the first-layer representation, denoted roughly

as 𝑥 (ℓ+1) = 𝑓 (𝑥 (ℓ)) + 𝑥 (0) , and (3) dense residuals [1, 52] that con-
nect the current layers densely to all previous layers. Please check
Section 2.4 for a fuller discussion about existing graph residuals.

Motivations. Existing residual connections build a relationship

between the spatial (message passing) and spectral (polynomial

filtering) domains of GNNs. For example, it has been demonstrated

that initial residual connections [5] mimic polynomial filtering in

the form of Personalized PageRank [35]. However, raw residuals

614

https://github.com/yuziGuo/KDDClenshawGNN
https://doi.org/10.1145/3580305.3599275
https://doi.org/10.1145/3580305.3599275
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599275&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhe Guo and Zhewei Wei

Figure 1: Illustration of different graph residual connections. Raw Residue and Initial Residue follows a single-line structure,
Dense Residue connect densely to all the former layers, while our Clenshaw Residue are able to approximate arbitrary graph
filters via Chebyshev polynomials by a neat double-line structure.

and initial residuals are primarily used to mitigate over-smoothing;

Their corresponding polynomials belong to the category of low-pass
polynomial filters, which do not perform well on heterophilic graphs.

On the other hand, dense residuals, such as MixHop [1] and

JKNet [52], do have the ability to express arbitrary polynomial

filters. However, their overly complex structure makes it more

difficult to learn the appropriate polynomial filter from the train-

ing data, which is a crucial ability possessed by recent spectral

models like GPRGNN [6] and ChebNetII [16]. As a result, on het-

erophilous graphs, these models also do not exhibit comparable

performances to spectral models. A question rises: can we build a
simple residual connection that can inject the key character-
istics of polynomial filters into a spatial model?

Our Solution: ClenshawResidual Connections. In this paper,

we provide a positive answer to the above question by proposing

the Clenshaw Residual Connection:

𝑥 (ℓ+1) = 2𝑓 (𝑥 (ℓ)) − 𝑥 (ℓ−1) + 𝛼ℓ𝑥 (0) .

Equipped with Clenshaw residuals, the iteration process of stacked

(spatial) convolutions can be interpreted by Clenshaw Summation
Algorithm, an iterative method for evaluating the weighted sum

over a kind of polynomial bases. Clenshaw algorithm reveals that

our proposed spatial model (termed ClenshawGNN in the rest of

our paper) can express arbitrary spectral-domain polynomial filters
based on the Chebyshev Basis (the second kind).

Contributions. We summarize our contributions as follows:

• Simple and novel residual connection submodules. We pro-

pose ClenshawGCN, a message-passing GNN which borrows

spectral power by adding a simple residual connection module

inspired by the Clenshaw algorithm. To the best of our knowl-

edge, we are the first to directly use negative residuals;

• Ability to approximate arbitrary graph filter via Cheby-
shev polynomials. We show that a 𝐾-order ClenshawGCN

simulates arbitrary 𝐾-order polynomial function based on the

Chebyshev basis of the Second Kind. Especially, the negative sec-
ond order residue allows for the implicit use of the Chebyshev

basis. We prove this by the Clenshaw Summation Algorithm for

the Chebyshev basis (the Second Kind).

• Superior empirical performances.We compare ClenshawGCN

with both spatial models with representative residual connec-

tions and state-of-art spectral models by extensive empirical

studies. We achieve new top performances on two large non-

homophilous datasets [26]. The results reveal that our motiva-

tion is realized: our model benefits from both sides. Compared

to spatial models, our proposed model inherits spectral mod-

els’ superiority on heterophilous datasets; Compared to spectral

models, our model benefits from the layer-wise entangled fea-

tures transformation as a spatial model.

2 PRELIMINARIES
2.1 Notations
We consider a simple graphG = (V, E,A), whereV = {1, 2, · · · , 𝑛}
is a finite node set with |V| = 𝑛, E is an edge set with |E | =𝑚, and

A is the unnormalized adjacency matrix. L = D − A denotes G′𝑠
unnormalized graph Laplacian, where D = diag{𝑑1, · · · , 𝑑𝑛} is the
degree matrix with 𝑑𝑖 =

∑
𝑗 A𝑖 𝑗 .

Following GCN, we add a self-connecting edge to each node,

and conduct symmetric normalization on L and A. The resultant

self-looped symmetric-normalized adjacency matrix and Laplacian

are denoted as P̃ = (D + I)−1/2 (A + I) (D + I)−1/2 and ˜L = I − P̃,
respectively.

Further, we attach each node with an 𝑓 -dimensional raw fea-

ture and denote the feature matrix as X ∈ R𝑛×𝑓 . Based on the

615

Clenshaw Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

topology of the underlying graph, GNNs enhance the raw node

features to better representations for downstream tasks, such as

node classification and link prediction.

2.2 Spatial Background

Layer-wise Message Passing Architecture. From a spatial

view, the main body of a Graph Neural Network is a stack of convo-
lution layers; they broadcast and aggregate features along the edges.
Such a graph neural network is also called a Message Passing Neu-

ral Network (MPNN). To be concrete, we consider an MPNN with

𝐾 graph convolution layers and denote the nodes’ representations

of the ℓ-th layer as H(ℓ)
. H(ℓ)

is constructed based on H(ℓ−1)
by a

propagation and possibly a transformation operation. For example,

in vanilla GCN [20], a convolution layer is defined as

H(ℓ) = 𝜎
(
P̃H(ℓ−1)W(ℓ))

)
, (1)

whose 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 operator is 𝑓 : H(ℓ−1) → P̃H(ℓ−1)
and trans-

formation operator is 𝑓 : P̃H(ℓ−1) → 𝜎 (P̃H(ℓ−1)W(ℓ))) .
Extra transformations, probably with poolings or concatenations

over {H(ℓ) }𝐾
ℓ=0

are applied before and after the stack of convolu-

tions to form a map from X to the final output Ŷ, which is deter-

mined by the downstream task, e.g., H(0) = MLP(X;W(0)) and
Ŷ = SoftMax(MLP(H(𝐾)

;W(𝐾+1))) for node classification tasks.

In this paper, a slight difference in notation lies in that, we denote

the input of convolution layers to be H∗
, instead of H(0)

, and intro-

duce notations H(−1)
and H(−2)

as zero matrices for simplicity of

later presentation.

Entangled and Disentangled Architectures. The motivations

for propagation and transformation in a convolution layer differ.

Propagations are related to graph topology, analyzed as an analog

of walks [5, 21, 46, 52], diffusion processes [4, 22, 56], etc. , while
the entangling of transformations between propagations follows
the convention of deep learning. A GNN model is of a disentan-

gled architecture if the transformation operations are separate from

the propagation operations, e.g., APPNP [21], GPRGNN [6] and

other polynomial filters. Though it is raised in [54] that the entan-

gled architecture might cause model degradations, we observe that

GCNII [5] under the entangled architecture does not suffer from

model degradation and even benefits from the entangled non-linear

transformations. Therefore, in our work, we adopt an entangled

architecture, and simply leverage the identity mapping of weight

matrices as in GCNII.

2.3 Spectral Background

Spectral Definition of Convolution. Graph spectral domain

leverages the geometric structure of underlying graphs in another

way [41]. Conducting eigen-decomposition on
˜L, i.e., ˜L = UΛU⊤

,

with the spectrum Λ = diag{𝜆1, · · · , 𝜆𝑛} in non-decreasing order,

since
˜L is real-symmetric, elements inΛ are real, andU is a complete

set of 𝑛 orthonormal eigenvectors. The spectral domain utilizes U
as a basis of frequency components analogously to classic Fourier
transform.

Now consider a column in X as a graph signal scattered on

V , denoted as x ∈ R𝑛 . Graph Fourier transform is defined as

x̂ := ⟨U, x⟩ = U⊤x , which projects graph signal x to the frequency
responses of basis components x̂. It is then followed by modula-
tion, which can be presented as x̂∗ := 𝑔𝜃 x̂ = diag{𝜃1, · · · 𝜃𝑛}x̂ . Af-

ter modulation, inverse Fourier transform: x∗ := Ux̂∗ transform x̂∗

back to the spatial domain. The three operations form a spectral

definition of convolution:

𝑔𝜃 ★ x = U𝑔𝜃U⊤x = Udiag{𝜃1, · · · 𝜃𝑛}U⊤x, (2)

which is also called spectral filtering. Specifically, when 𝜃𝑖 = 1 − 𝜆𝑖 ,
U𝑔𝜃U𝑇 x ≡ P̃x, giving a spectral explanation of GCN’s convolution

in Equation (1).

Polynomial Filtering. The calculation of U in Equation (2) is

of prohibitively expensive. To avoid explicit eigen-decomposition

of U, 𝜃𝑖 is approximated by a polynomial function of 𝜆𝑖 , that is,

x̂∗𝑖 = 𝑔𝜃 (𝜆𝑖)⟨U𝑖 , x⟩.

The spectral filtering process then becomes

𝑔𝜃 ★ x = U𝑔𝜃 (Λ)U𝑇 x ≡ 𝑔𝜃 (˜L)x, (3)

where the calculation of 𝑔𝜃 (˜L)x eliminates eigen-decomposition

and can be calculated in a localized way in O(|E|) [9, 20].

Definition 2.1 (Polynomial Filters). Consider a graph whose

Laplacian matrix is
˜L. By adopting the set of orthonormal

eigenvectors of
˜L as the frequency basis, a polynomial

filter is a process or operator that scales each frequency

component of the input signal by 𝑔𝜃 (𝜆) , where 𝑔𝜃 is a

polynomial filtering function and 𝜆 is the corresponding

eigenvalue of the frequency component.

Equivalently, we can define the filtering function on the spectrum

of P̃, instead of
˜L. Since P̃ = I − ˜L, P̃ and

˜L share the same set

of orthonormal eigenvectors U, and the spectrum of P̃, denoted
as M = {𝜇1, · · · , 𝜇𝑛}, satisfies 𝜇𝑖 = 1 − 𝜆𝑖 (𝑖 = 1, · · · , 𝑛) . Thus, the
filtering function can be defined as ℎ𝜃 , where ℎ𝜃 (𝜇) ≡ 𝑔𝜃 (1 − 𝜇) .
To ensure a concise presentation, we shall employ this equivalent

definition in Section 3.

Advantage On Heterophilous Graphs. Spectral graph neural

networks have the ability to strengthen desired frequency compo-

nents in U by 𝑔𝜃 . Since they can strengthen high-frequency com-

ponents which capture the differences between nodes, favorable

performances can be achieved on heterophilous graphs [30, 57]. On

the contrary, some spatial GNNs are proven to be fixed low-pass

filters [34].

Polynomial Approximation Using Bases. A line of work ap-

proximate 𝑔𝜃 over some polynomial basis up to the truncated 𝐾-th

order, i.e., 𝑔𝜃 (𝑥) =
∑𝐾
𝑘=0

𝜃𝑖𝜙𝑖 (𝑥) , where ®𝜃 = [𝜃0, · · · , 𝜃𝐾] ∈ R𝐾+1

is the coefficients. In the field of polynomial filtering and spectral

GNNs, different bases have been explored for {𝜙𝑖 (𝑥)}𝑖=𝐾𝑖=0 , including
Chebyshev basis [9, 16], Bernstein basis [15], Jacobi basis [47], etc.

616

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhe Guo and Zhewei Wei

Chebyshev Basis. Chebyshev basis, which has been extensively

explored [31], has appeared in related literature since early at-

tempts for the approximation of 𝑔𝜃 [9] or kernels in Graph signal

Processing [13]. Besides Chebyshev polynomials of the first kind (

{𝑇𝑖 (𝑥)}∞𝑖=0), the second kind ({𝑈𝑖 (𝑥)}
∞
𝑖=0

) is also wildly used. Both

of them can be generated by a recurrence relation:

𝑇0 (𝑥) = 1, 𝑇1 (𝑥) = 𝑥,
𝑇𝑛 (𝑥) = 2𝑥𝑇𝑛−1 (𝑥) −𝑇𝑛−2 (𝑥) . (𝑛 = 2, 3, · · ·)

𝑈−1 (𝑥) = 0, 𝑈0 (𝑥) = 1,𝑈1 (𝑥) = 2𝑥,

𝑈𝑛 (𝑥) = 2𝑥𝑈𝑛−1 (𝑥) −𝑈𝑛−2 (𝑥) . (𝑛 = 1, 2, · · ·) (4)

In this paper, we will show the relationship between our negative

residual and the Chebyshev polynomials of the second kind using

this recurrence relation. A useful characteristic we will make use of

in the proof in Appendix A is that the recurrence starts from 𝑈−1.

2.4 Graph Residual Connections
As shown in Figure 1, we broadly classify the graph residual con-

nections into three types.

Raw Residual Connections. Residual connections were ini-

tially introduced to graph neural networks to alleviate the issue

of model degradation problem, which refers to the drop of GCN

performance as the network depth increases. This degradation

hinders GCN from the effective leverage of larger neighborhoods.

Kipf and Welling [20] directly transplant the raw residual connec-

tion utilized in ResNet [14] to GCN as a variant model, denoted

as H(ℓ) = 𝜎 (P̃H(ℓ−1)W(ℓ)) + H(ℓ−1)
. However, despite the raw

residual can alleviate model degradation for GCN up to 10 layers,

it gradually loses its effectiveness as models become even deeper,

as evidenced by follow-up studies [5, 52]. The reason behind this

was gradually elucidated through discussions on the concept of

over-smoothing [24, 37, 46].

Initial Residual Connections. A line of discussion regard-

ing over-smoothing view GCNs equipped with raw residual con-

nections as lazy random walks [5, 46, 52], which still converge to

the stationary vector. Building upon this understanding, the initial

residual connection was proposed to simulate personalized random
walks [35]. As an example, the GCNII model is denoted as

1
:

H(ℓ)=𝜎
((
(1−𝛼)P̃H(ℓ−1)+𝛼H∗

)(
(1−𝛽ℓ)I𝑛+𝛽ℓW(ℓ)

))
. (5)

Zhu et al. [59] interprets the initial residual connection utilized

in GCNII from an optimization perspective, suggesting that by

disregarding the entangled non-linear transformation, GCNII can

iteratively solve the optimization problem:

argmin

H
𝛼

H − H∗

2

𝐹
+ (1 − 𝛼) tr

(
H⊤ ˜LH

)
. (6)

The optimization problem reveals that the initial residual connec-

tion in GCNII achieves a compromise between Laplacian smoothing

(the second term, promoting similarity among neighboring nodes)

and preserving individual characteristics (the first term). While this

1
It’s worth noting that besides the initial residual connection i.e., (1 − 𝛼)PH(ℓ−1) +
𝛼H∗

, GCNII introduces an additional submodule in weight matrices, namely identity

mapping, which is also incorporated into our approach

compromise successfully addresses over-smoothing, GCNs with

initial residuals still fall within the realm of the homophily assump-
tion [32].

AirGNN[27] introduces an extension for the initial residual

connection, which is derived from a similar optimization problem as

shown in Equation(6), but with the first term replaced by utilizing

the ℓ21 norm. By employing the proximal gradient technique to

solve the optimization problem, AirGNN obtains a suitable value of

𝛼 for each step. However, due to the inherent limitations imposed

by the predetermined optimization objective, AirGNN also inherently

falls within the scope of the homophily assumption.

Furthermore, the initial residual connection has gained wide-

spread usage as a submodule in variousmodels, such as GloGNN [25]

and GAMLP [55]. As these models extend beyond the basic graph

convolution framework, we have chosen to omit the discussion of

these models in our paper.

Dense Residual Connections. These studies exploit feature

maps after different times of convolutions and combine them selec-

tively to make extensive use of multi-scale information [1, 52]. For

instance, JKNet [52] employs a dense residual connection at the
final layer and combines all intermediate representations in various

ways, such as weighted-sum, max-pooling, concatenation, LSTM,

and more.MixHop [1] concatenates feature maps from multiple

hops at each layer, denoted as H(ℓ+1) =

𝑗∈𝐾

𝜎

(
P̃𝑗H(ℓ)W(ℓ)

𝑗

)
, which

can be considered as staking several dense graph residual networks.

Besides, Li et al. [23] explore the connection pattern inspired by

DenseNet [18], where each layer is connected to all former layers.

However, this approach results in unaffordable space consumption.

3 METHOD
3.1 Clenshaw Convolution
We formally pose the ℓ-th layer’s representation of ClenshawGCN

as

H(ℓ)=𝜎
((
2P̃H(ℓ−1) −H(ℓ−2)︸ ︷︷ ︸

Negative Second
Order Residue

+ 𝛼ℓH∗︸ ︷︷ ︸
Initial

Residue

)
·
(
(1−𝛽ℓ)I𝑛+𝛽ℓW(ℓ)︸ ︷︷ ︸
Identity Mapping

from GCNII [5]

))
,

(7)

for ℓ = 0, 1, . . . , 𝐾 , H(−2) = H(−1) = O, H∗ = MLP(X;W∗).
We adopt an entangled architecture for Clenshaw convolution,

that is, each convolution layer is composed of a propagation opera-

tion and a transformation operation. For the propagation part, we

enhance the conventional convolution with theClenshaw residue,
which is composed of a Negative Second Order Residue and

an auxiliary initial residue. The detailed mechanism of Clenshaw

residue will be elucidated in the next Section.

As for the transformation part, we incorporate the identity map-
ping from GCNII, where the weight matrice for feature transfor-

mation are defined as {(1 − 𝛽ℓ)I𝑛 + 𝛽ℓW(ℓ) }𝐾
ℓ=0

is used instead of

{W(ℓ) }𝐾
ℓ=0

. Following GCNII, we set 𝛽ℓ = log(𝜆ℓ + 1) ≈ 𝜆/ℓ , where
𝜆 is a hyper-parameter selected among {0.5, 1.0, 1.5}.

As mentioned in the Introduction, the key feature of the Clen-

shaw residual connection is the ability to mimic a polynomial filter

with arbitrary coefficients above the Chebyshev basis (the second

617

Clenshaw Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

kind). In this section, we provide a detailed explanation of how the

residual connections establish a connection between our model and

arbitrary polynomial representations over the chosen basis.

3.2 A Warm-up: GCNII and Horner’s method
In this section, we will first consider an incomplete version of the

ClenshawGCN termed HornerGCN. This extension is derived from

a warm-up discussion on GCNII.

GCNII: Predetermined Personalized PageRank Coefficients.
We start with an analysis of GCNII. To simplify the analysis, we

consider (1 − 𝛽ℓ)I𝑛 + 𝛽ℓW(ℓ)
as I, and take relu(𝑥) = 𝑥 . Then the

iteration (5) is simplified as

H(ℓ) = (1−𝛼)P̃H(ℓ−1)+𝛼H∗ . (8)

For a GCNII model with 𝐾 stacked layers, expanding (8) yields

H(𝐾) =
∑𝐾
ℓ=0 𝛼ℓ P̃

ℓH∗
, where 𝛼ℓ represents the effective weight

associated with the ℓ-th propagation step. Specifically, it can be

calculated that 𝛼ℓ =

{
𝛼 (1 − 𝛼)ℓ , ℓ < 𝐾

(1 − 𝛼)𝐾 , ℓ = 𝐾
. This formulation demon-

strates that the iterative process of GCNII combines the representa-

tions from different layers with fixed PageRank coefficients

FreeGCNII’s Coefficients. However, in the case of heterophilous

graphs, a more flexible exploitation of different diffusion layers is

preferred [52, 56], where arbitrarily learnable {𝛼ℓ }𝐾ℓ=0 are used, in
contrast to GCNII’s fixed PageRank coefficients. To align with these

works, an equivalent method to modify GCNII is to replace the fixed

𝛼 in (5) with learnable coefficients. In this way, the convolution we

obtain is:

H(ℓ)=𝜎
((

P̃H(ℓ−1) + 𝛼ℓH∗
)(
(1−𝛽ℓ)I𝑛+𝛽ℓW(ℓ)

))
. (9)

The unfolded nested expression of Equation (9), when ignoring

non-linear transformations, then becomes

∑𝐾
ℓ=0 𝛼𝐾−ℓ P̃ℓH∗

. This is

equivalent to applying spectral filtering over H∗
using a polynomial

filtering function with arbitrary coefficients over the monomial

basis: ℎ(𝜇) = ∑𝐾
ℓ=0 𝛼𝐾−ℓ P̃ℓ𝜇ℓ .

Horner’s Method. What captivates us is that the recurring

unfolding process can be effectively characterized as an implementa-

tion of Horner’s Method. To illustrate this, we present and compare

(1) Horner’s Methods and (2) the unfolding process of Equation (9).

Horner’s Method [17] is a technique for computing the value of

𝑝 (𝑥0), where 𝑝 (𝑥) is defined via 𝑝 (𝑥) =
∑𝑛
𝑖=0 𝑎𝑖𝑥

𝑖 = 𝑎0 +𝑎1𝑥 + · · · +
𝑎𝑛𝑥

𝑛
. The essence of Horner’s Method lies in the rearrangement

of the evaluation process for 𝑝 (𝑥0), as follows:

𝑏𝑛 := 𝑎𝑛,

𝑏𝑛−1 := 𝑎𝑛−1 + 𝑏𝑛𝑥0,
.
.
.

𝑏0 := 𝑎0 + 𝑏1𝑥0,
⇒ 𝑝 (𝑥0) := 𝑏0 .

The unfolding Process of Equation (9) is:

H(0) = 𝛼0H∗,

H(1) = P̃
(
𝛼0H∗) + 𝛼1H∗,

H(2) = P̃
(
P̃
(
𝛼0H∗) + 𝛼1H∗

)
+ 𝛼2H∗,

.

.

.

H(𝐾) = P̃
(
· · ·

(
P̃
(
P̃
(
𝛼0H∗) + 𝛼1H∗

)
+ 𝛼2H∗

)
· · ·

)
+ 𝛼𝐾H∗

⇒ H(𝐾) = 𝛼𝐾H∗ + 𝛼𝐾−1P̃H∗ + · · · + 𝛼0P̃𝐾

=

𝐾∑︁
ℓ=0

𝛼𝐾−ℓ P̃ℓH∗ .

This process aligns in parallel with the recurring of Horners’ method

to expand a polynomial. Therefore, we term the model stacked by

convolutions in Equation (9) as HornerGCN.

Towards Clenshaw’s Method. In this warm-up section, we

eliminate the homophilic assumption of GCNII by simply substitut-

ing the predetermined PageRank coefficients with arbitrary learn-

able coefficients. The resultant model, named HornerGCN, is able

to represent any possible polynomial filter. Notably, the unfolding
process of the stacked convolutional layers within HornerGCN

corresponds precisely to the well-known classical technique called

Horner’s Method.

One of the main characteristic shared by state-of-art polynomial

filters [15, 16, 47] is their utilization of the polynomial basis for better
approximation. Given that Horner’s Method is designed specifically

for the weighted sum of the Monomial basis, a natural question

arises, Can we incorporate polynomial basis into such convolutions?
In fact, Horner’s Method is a special case for Clenshaw summation

algorithm [7, 48, 49]. The Clenshaw SummationAlgorithm indicates

that, to introduce the utilization of a diverse range of polynomial

basis, all we need is to establish a negative connection back towards
the second last layer. Based on the warm-ups, we proceed to the

subsequent section where we present our primary methodology:

ClenshawGCN.

3.3 Polynomial Filter behinds ClenshawGCN

Section Overview. We have proposed the formulation of Clen-

shaw convolution in Equation (7). In this section, the role of the

negative residual will be revealed.
Theorem 3.1 concretely states the existence and exact form of

the underlying polynomial filtering function within ClenshawGCN.

For the proof of this theorem, we first introduce the Clenshaw Sum-
mation Algorithm, an iterative algorithm for evaluating summations

over a kind of polynomial bases, which inspires our Clenshaw con-

volution. Using a customized version of the Clenshaw algorithm

specifically tailored for the second kind of Chebyshev basis, we

demonstrate that the iteration of graph convolutions, enhanced by

our residuals, effectively yields a series of underlying polynomial

filtering functions. Notably, the form of these functions bears an

obvious resemblance to the structure of the Clenshaw summation

algorithm. Based on the previous foundations, the spectral nature

of Theorem 3.1 is obviously revealed.

618

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhe Guo and Zhewei Wei

Spectral Nature. Given the definition of polynomial filters (Defi-
nition 2.1), we pose Theorem 3.1 on ClenshawGCN’s corresponding

polynomial filter.

Theorem 3.1 (ClenshawGCN’s corresponding polyno-

mial filter). A 𝐾-order ClenshawGCN defined in Equa-
tion (7), when consider (1 − 𝛽ℓ)I𝑛 + 𝛽ℓW(ℓ) for each ℓ to be
I, and relu(𝑥) to be 𝑥 , is a polynomial filter

ℎ(𝜇) =
𝐾∑︁
ℓ=0

𝛼𝐾−ℓ𝑈ℓ (𝜇),

where {𝑈ℓ }𝐾ℓ=0 is the truncated 𝐾-order second-kind Cheby-
shev basis, and {𝛼ℓ }𝐾ℓ=0 is the set of initial residue coefficients.

In the subsequent sections, we will proceed to prove this theorem

comprehensively.

Lemma: Clenshaw Algorithm. Clenshaw summation algo-

rithm was first proposed by Clenshaw [7] to evaluate the linear

combination of the shifted Chebyshev polynomials (the first kind) by
a recurrence. It is pointed out in Clenshaw’s original note [7] that,

this algorithm can be easily adapted to any polynomial series that

satisfy a three-term recurrence relation
2
among the neighboring

polynomials. Horner’s method is a special case for the Clenshaw

algorithm.

In preparation for the proof of Theorem 3.1 in the upcoming

section, we introduce Clenshaw’s Algorithm for Chebyshev Poly-

nomials (the second Kind) in Lemma 3.2. Compared to the more

general Clenshaw’s algorithm, we have made certain simplifica-

tions in the calculation of 𝑆 (𝑥) within Lemma 3.2. This distinction

leads us to present our proof in Appendix A. Interested readers

can compare our proof with similar proofs for the first kind of

Chebyshev basis as found in Mason and Handscomb [31].

Lemma 3.2 (Clenshaw Summation Algorithm for Cheby-

shev polynomials (Second Kind)). For the Second Kind
of Chebyshev Polynomials {𝑈𝑘 (𝑥)}∞𝑘=0, the weighted sum of
the truncated series with order 𝑛:

𝑆 (𝑥) =
𝑛∑︁
𝑘=0

𝑎𝑘𝑈𝑘 (𝑥),

can be computed by a recurrence formula:

𝑏𝑛+2 (𝑥) := 0,

𝑏𝑛+1 (𝑥) := 0,

𝑏𝑘 (𝑥) := 𝑎𝑘 + 2𝑥𝑏𝑘+1 (𝑥) − 𝑏𝑘+2 (𝑥).
(𝑘 = 𝑛, 𝑛 − 1, · · · , 0) (10)

Then 𝑆 (𝑥) ≡ 𝑏0 (𝑥).

Proof of Theorem 3.1. Theorem 3.1 is immediately clear after

the proposition below is proved.

2
For three-term recurrence relation, we mean that the 𝑘-th polynomial 𝜙𝑘 in a poly-

nomial series {𝜙𝑖 }∞𝑖=0 can be generated from 𝜙𝑘−1 and 𝜙𝑘−2 . Check Equation (13) for

an example.

Proposition 3.3. Consider (1 − 𝛽ℓ)I𝑛 + 𝛽ℓW(ℓ) for each ℓ to be
I, and relu(𝑥) to be 𝑥 , then each H(ℓ) obtained through Equation (7)

can be equivalently derived from a polynomial filtering function,
denoted as ℎ (ℓ) (𝜇), operating on the input features H∗. Moreover, for
ℓ = 0, 1, · · · , 𝐾 , ℎ (ℓ) (𝜇) satisfies :

ℎ (ℓ) (𝜇) = 𝛼ℓ + 2𝜇ℎ (ℓ−1) (𝜇) − ℎ (ℓ−2) (𝜇) .

Proof. We establish the proof of Proposition 3.3 using the in-

ductive method.

(1) Given Conditions.

Iteration: H(ℓ) = 2P̃H(ℓ−1)−H(ℓ−2) + 𝛼ℓH∗, (11)

Initialization: H(−1) = H(−2) = 0.

(2) Basis Case. Note thatH(−2) = H(−1) = 0.We can soonlywrite

the corresponding polynomial filtering functions for generating

H(−2)
and H(−1)

that are:

ℎ (−1) (𝜇) = 0, ℎ (−2) (𝜇) = 0.

(3) Inductive Hypothesis. Assume thatwhen the convolution (Equa-

tion (11)) progresses to the ℓ-th layer, we have already established

that H(ℓ−1)
and H(ℓ−2)

are polynomial filtered results of H∗
, with

the corresponding filtering functions ℎ (ℓ−1) and ℎ (ℓ−2) , respec-
tively. Specifically,

H(ℓ−1) = Uℎℓ−1 (M)U𝑇H∗, H(ℓ−2) = Uℎℓ−2 (M)U𝑇H∗ .

(4) Inductive Step. Plugging the inductive hypothesis into Equa-

tion (11), we soonly get:

H(ℓ) = 2UMU𝑇Uℎ (ℓ−1) (M)U𝑇H∗ − Uℎ (ℓ−2) (M)U𝑇H∗ + 𝛼ℓH∗

= U
(
2Mℎ (ℓ−1) (M) − ℎ (ℓ−2) (M) + 𝛼ℓ I

)
U𝑇H∗ .

We can conclude that H(ℓ)
is also a polynomial filtered result of

H∗
, with the corresponding filtering function given by:

ℎ (ℓ) (𝜇) = 𝛼ℓ + 2𝜇ℎ (ℓ−1) (𝜇) − ℎ (ℓ−2) (𝜇) .

Thus, the filtering function for the ℓ-th layer, denoted as ℎ (ℓ) (𝜇),
exhibits the same form as stated above.

By combining the basis case, the inductive hypothesis, and the

inductive step, we have successfully established the proof of Propo-

sition 3.3. □

Stacking the inductive relations from Proposition 3.3 for ℓ =

0, 1, · · · , 𝐾 , we obtain the following series:

ℎ (−2) (𝜇) = 0,

ℎ (−1) (𝜇) = 0,

ℎ (ℓ) (𝜇) = 𝛼ℓ + 2𝜇ℎ (ℓ−1) (𝜇) − ℎ (ℓ−2) (𝜇),
(𝑘 = 0, 1, · · · , 𝐾),

Note that the progressive access of the underlying polynomial

filtering functions is in a totally parallel way with the recurrence

in Equation (10). From Theorem 3.1, we soonly come to the point:

the final output of ClenshawGCN is corresponding to a polynomial

filter, which is:

∑𝐾
ℓ=0 𝛼𝐾−ℓ𝑈ℓ (𝜇) ≡ ℎ (𝐾) (𝜇) . Thus, we have finished

the proof of Theorem 3.1.

619

Clenshaw Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

4 EXPERIMENTS

Overview. In this section, we conduct three sets of experiments.

• In Section 4.1 to 4.3, we verify that ourmethod, aimed at injecting

spectral power into a spatial model, benefits from both sides.
Specifically, we perform a comparative analysis between Clen-

shawGCN and both spatial methods enhanced with residuals

(Section 4.1) and state-of-the-art spectral methods (Section 4.2).

Furthermore, we demonstrate the state-of-the-art performances

achieved by our approach on two large LINKX datasets (Sec-

tion 4.3).

• In Section 4.4 to 4.5, we carry out ablation studies to validate

the effectiveness of the submodules in our model. The first abla-

tion investigates ClenshawGCN’s advantage as a spatial model;

the second ablation verifies the effectiveness of the two compo-

nents in Clenshaw residual connections. The first ablation study

examines the advantages of ClenshawGCN as a spatial model;

while the second ablation study verifies the effectiveness of the

two components in Clenshaw residual connections.

• In Appendix C, we include two experiments conducted during

the rebuttal phase that merit further discussion. The first ex-

periment provides evidence that ClenshawGCN successfully

addresses model degradation, which is a primary focus of

early graph residuals. The second experiment demonstrates the

potential of Clenshaw residuals to be employed in other spa-
tial backbones, i.e., GAT [45], despite lacking a direct spectral

interpretation.

Overall Experimental Setup. The ten datasets used for our

experiments are outlined in Table 1. Additional details regarding

the experimental setup, including further information about the

used datasets, data splitting, ClenshawGCN’s configuration, and

hyperparameter tuning, can be found in Appendix B.

Table 1: Statistics for all node classification datasets we use.
Datasets of different homophily degrees and different sizes
are used.

Dataset #Nodes #Edges #Classes H(𝐺)
Cora 2,709 5,429 7 .83

PubMed 19,717 44,338 3 .71

Citeseer 3,327 4,732 6 .79

Squirrel 5,201 217,073 5 .22

Chameleon 7,600 33,544 5 .23

Texas 183 309 5 .11

Cornell 183 295 5 .30

Penn94 41,554 1,362,229 2 .47

Genius 421,961 984,979 2 .62

Twitch-Gamers 168,114 6,797,557 2 .55

4.1 Comparing ClenshawGCN with Other
Residual-Based Methods.

In this subsection, we demonstrate the effectiveness of ClenshawGCN’s

residual connections by comparing it with other spatial models,

namelyGCNII [5], H2GCN [58],MixHop [1], and JKNet [52]. Among

these models, GCNII incorporates initial residual connections, while

the remaining models employ dense residual connections. Addi-

tionally, the methods used to combine multi-scale representations

in H2GCN and JKNet are more intricate than the weighted sum.

Results. As presented in Table 2a, our ClenshawGCN surpasses

all the baseline models. In accordance with our expectations, Clen-

shawGCN exhibits notably superior performance on the heterophilous
datasets, including the specialized H2GCN model designed specifi-

cally for heterophilic graphs. This observation highlights the effec-

tiveness of leveraging spectral characteristics in our approach.

On the other hand, ClenshawGCN demonstrates a competitive

edge even on the homophilic datasets, despite the presence of strong
baseline models such as GCNII and JKNet, which are known for

their effectiveness on such datasets. Particularly noteworthy is the

performance of ClenshawGCN on the PubMed dataset, where it

achieves state-of-the-art results.

4.2 Comparing ClenshawGCN with Spectral
Baselines

In Section 3.3, we have demonstrated that ClenshawGCN func-

tions as a spectral model and has the capability to emulate any

𝐾-order polynomial filter by utilizing {𝑈ℓ }𝐾ℓ=0. In this subsection,

we compare ClenshawGCN with strong spectral GNNs, including

ChebNet [9], APPNP [21], ARMA [3], GPRGNN [6], BernNet [15],

and ChebNetII [16]. Among these models, APPNP utilizes fixed
parameters to simulate polynomial filters, ARMA GNN simulates

ARMA filters [33], and the remaining models employ learnable
polynomial filters based on the Chebyshev basis, Monomial basis,

or Bernstein basis.

Results. As indicated in Table 2b, ClenshawGCN demonstrates

superior performance compared to most of the baseline models

on each dataset, with the exception of Chameleon and Citeseer.

Notably, ClenshawGCN achieves a large margin of improvement

of 7.66% over other models on the Squirrel dataset.

It is worth noting the comparison between ClenshawGCN and

ChebNetII. ChebNetII benefits from the utilization of Chebyshev
nodes, which play a vital role in polynomial interpolation and pro-

vide it with additional power. However, even without the use of

Chebyshev nodes, ClenshawGCN exhibits comparable performance

to ChebNetII. The additional power of ClenshawGCN may stem

from the entangled non-linear transformations it employs. We will

further investigate and re-examine this aspect in Section 4.4.

4.3 ClenshawGCN on Large non-Homophilous
Datasets

Additionally, we conduct a comparison of ClenshawGCN on three

large non-homophilous datasets obtained from Lim et al. [26]:

Penn94, Genius, and Twitch-gamer. The selected baselines for com-

parison include spatial models with representative residual blocks

(GCNII, MixHop), state-of-the-art spectral models (GPRGNN, Cheb-

Net, BernNet, ChebNetII), as well as the best-performing methods

on these datasets, namely LINKX [26], glognn+ [25], and ACM-

GCN [29].

620

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhe Guo and Zhewei Wei

Table 2: Comparison with (a) spatial models with representative residuals submodules and (b) state-of-art spectral models.
Results of ClenshawGCN are reported after repeated experiments on twenty random 60%/20%/20% splits.

(a) Comparison with other models equipped with different kinds of residual connections. Mean classification accuracies (± standard derivations)
of twenty random splits are displayed. Besides the ClenshawGCN, all the results are taken directly from Luan et al. [28] and Lim et al. [26].

Datasets Chameleon Squirrel Actor Texas Cornell Cora Citeseer PubMed

|V | 2,277 5,201 7,600 183 183 2,708 3,327 19,717

MLP 46.59±1.84 31.01±1.18 40.18±0.55 86.81±2.24 84.15±3.05 76.89±0.97 76.52±0.89 86.14±0.25

GCN 60.81±2.95 45.87±0.88 33.26±1.15 76.97±3.97 65.78±4.16 87.18±1.12 79.85±0.78 86.79±0.31

GCNII 63.44±0.85 41.96±1.02 36.89±0.95 80.46±5.91 84.26±2.13 88.46±0.82 79.97±0.65 89.94±0.31

H2GCN 52.30±0.48 30.39±1.22 38.85±1.17 85.90±3.53 86.23±4.71 87.52±0.61 79.97±0.69 87.78±0.28

MixHop 36.28±10.22 24.55±2.60 33.13±2.40 76.39±7.66 60.33±28.53 65.65±11.31 49.52±13.35 87.04±4.10

GCN+JK 64.68±2.85 53.40±1.90 32.72±2.62 80.66±1.91 66.56±13.82 86.90±1.51 73.77±1.85 90.09±0.68

ClenshawGCN 69.44±2.06 62.14±1.65 42.08±1.99 93.36±2.35 92.46±3.72 88.90±1.26 80.34±1.26 91.99±0.41

(b) Comparison with spectral models. Mean classification accuracies (±95% confidence intervals) on twenty random 60%/20%/20%
train/validation/test splits are displayed. Besides the ClenshawGCN, all the results are taken directly from [15].

Datasets Chameleon Squirrel Actor Texas Cornell Cora Citeseer PubMed

|V | 2,277 5,201 7,600 183 183 2,708 3,327 19,717

ChebNet 59.51±1.25 40.81±0.42 37.42±0.58 86.28±2.62 83.91±2.17 87.32±0.92 79.33±0.57 87.82±0.24

ARMA 60.21±1.00 36.27±0.62 37.67±0.54 83.97±3.77 85.62±2.13 87.13±0.80 80.04±0.55 86.93±0.24

APPNP 52.15±1.79 35.71±0.78 39.76±0.49 90.64±1.70 91.52±1.81 88.16±0.74 80.47±0.73 88.13±0.33

GPRGNN 67.49±1.38 50.43±1.89 39.91±0.62 92.91±1.32 91.57±1.96 88.54±0.67 80.13±0.84 88.46±0.31

BernNet 68.53±1.68 51.39±0.92 41.71±1.12 92.62±1.37 92.13±1.64 88.51±0.92 80.08±0.75 88.51±0.39

ChebNetII 71.37±1.01 57.72±0.59 41.75±1.07 93.28±1.47 92.30±1.48 88.71±0.93 80.53±0.79 88.93±0.29

ClenshawGCN 69.44±0.92 62.14±0.70 42.08±0.86 93.36±0.99 92.46±1.64 88.90±0.59 80.34±0.57 91.99±0.17

Table 3: Comparisonwith state-of-artmodels on three LINKX
datasets. we use the five random splits given in LINKX [26]
with a 50%/25%/25% proportion to align with reported results.
Results other than our methods are mainly taken from Lim
et al. [26], He et al. [16] and Li et al. [25]. Results of ACM-
GCN++ are taken from the leaderboard of the paperswithcode
website.

Datasets Penn94 genius twitch-gamers

|V | 41,554 421,961 168,114

MLP 73.61 ± 0.40 86.68 ± 0.09 60.92 ± 0.07

GCN 82.47 ± 0.27 87.42 ± 0.35 62.18 ± 0.26

GAT 81.53 ± 0.55 55.80 ± 0.87 59.89 ± 4.12

MixHop 83.47 ± 0.71 90.58 ± 0.16 65.64 ± 0.27

GCNII 82.92 ± 0.59 90.24 ± 0.09 63.39 ± 0.61

GPR-GNN 83.54 ± 0.32 90.15 ± 0.30 62.59 ± 0.38

ChebNet 82.59 ± 0.31 89.36 ± 0.31 62.31 ± 0.37

BernNet 83.26 ± 0.29 90.47 ± 0.33 64.27 ± 0.31

ChebNetII 84.86 ± 0.33 90.85 ± 0.32 65.03 ± 0.27

LINKX 84.71 ± 0.52 90.77 ± 0.27 66.06 ± 0.19

ACM-GCN 82.52 ± 0.96 80.33 ± 3.91 62.01 ± 0.73

ACM-GCN++ 86.08 ± 0.43 91.40 ± 0.07 65.94 ± 0.28

GloGNN 85.57 ± 0.35 90.66 ± 0.11 66.19 ± 0.29

GloGNN++ 85.74 ± 0.42 90.91 ± 0.13 66.34 ± 0.29

ClenshawGCN 85.38 ± 0.25 91.69 ± 0.25 66.56 ± 0.28

Results. As depicted in Table 3, the performance of ClenshawGCN

on the non-homophilous datasets is exceptional. It outperforms

state-of-the-art spectral methods on all three datasets. Particularly

noteworthy is that ClenshawGCN achieves new best performances,

to the best of our knowledge, on the genius and twitch-gamer

datasets.

4.4 Ablation Study I: Advantage over Pure
Polynomial Filters.

We have shown in the methodology section that, beyond general

spatial models, ClenshawGCN incorporates a polynomial filter back-

bone based on the Chebyshev basis (the second kind). On the other

side, beyond general polynomial filters, ClenshawGCN shares en-

tangled non-linear transformations with ‘deep’ models, as opposed

to ‘shallow’ models that typically have one or two MLP layers

disentangled from graph propagations. In this ablation study, we

re-examine the effectiveness of these non-linear transformations.

AblationModels. We use two ablationmodels. The first ablation

model, ClenshawGCN(-Act), represents a variant of ClenshawGCN

where the activation function in Equation (7) is omitted. The second

ablation model, ClenshawGCN(-Act-W), represents another variant

of ClenshawGCNwhere both the activation function and theweight

matrix in Equation (7) are removed. Note that ClenshawGCN(-Act-

W) can be seen as a pure polynomial filter based on the second kind

of Chebyshev basis, with the order of calculations rearranged.

621

Clenshaw Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Results. We conduct this ablation study on four datasets and

exhibit the results in Table 4. On Squirrel, PubMed and Penn94, the

performances of ClenshawGCN surpass ClenshawGCN(-Act) and

ClenshawGCN(-Act-W), which demonstrates that the entangling

of non-linear transformation further improves the performances

based on pure polynomial filters.

Table 4: Results for ablation study I. The reported results are
based on the same experimental setup in Table 2.

Models ClenshawGCN ClenshawGCN(-Act) Clenshaw(-Act-W)

Squirrel 62.14 ± 1.65 61.55 ± 1.42 56.92 ± 2.13

Chameleon 69.45 ± 2.12 67.29 ± 2.35 70.08 ± 2.43
PubMed 91.99 ± 0.41 91.56 ± 0.46 91.27 ± 0.53

Penn94 85.38 ± 0.25 84.68 ± 0.56 84.39 ± 0.26

4.5 Ablation Study II: Submodules of Clenshaw
Residual Connection

Recall Equation (7). Compared with vanilla GCN convolution, Clen-

shawGCN is composed of two submodules: an initial residual and a

second-order negative residual. In this section, we conduct ablation

analyses on these two modules to verify their contributions.

Ablation Model: HornerGCN. We use HornerGCN as an ab-

lation model to verify the contribution of negative residues. Recall
Section 3.2, the corresponding polynomial filter of HornerGCN

is ℎ𝐻𝑜𝑟𝑛𝑒𝑟 (𝜇) =
∑𝐾
ℓ=0 𝛼𝐾−ℓ𝜇ℓ which uses the Monomial basis.

While the complete form of our ClenshawGCN borrows the use of

Chebyshev basis by negative residues.

Ablation Model: FixedParamClenshawGCN. By the Fixed-

ParamClenshawGCN model, we verify the contribution of flexible
initial residue in Equation (7). We keep the use of negative resid-

uals, but fix ®𝛼 = [𝛼0, 𝛼1, · · · , 𝛼𝐾] to be 𝛼ℓ = 𝛼 (1 − 𝛼)𝐾−ℓ
and

𝛼0 = (1 − 𝛼)𝐾 following APPNP [21] and the initialization set-

ting in GPRGNN [6], where 𝛼 ∈ [0, 1] is a hyperparameter. The

corresponding polynomial filter of FixedParamClenshawGCN is

ℎ𝐹𝑖𝑥 (𝜇) =
∑𝐾
ℓ=0 𝛼𝐾−ℓ𝑈ℓ (𝜇) .

Results. We compare the performance of HornerGCN and Fixed-

ParamClenshawGCN with GCN, GCNII and ClenshawGCN on two

median-sized datasets: Chameleon and Squirrel. As shown in Fig-

ure 2, either removing the negative second-order residue or fixing

the initial residue causes an obvious drop in Test Accuracy.

Notably, even with only one residual module, HornerGCN and

FixedParamClenshawGCN still outperformhomophilicmodels such

as GCNII. The reason behind HornerGCN’s superiority is evident:

it can simulate any polynomial filter, which is advantageous for

heterophilic graphs. As for FixedParamClenshawGCN, although

the coefficients of 𝑈ℓ (𝜇) are fixed, the contribution of each fused

level (i.e., P̃ℓH∗
) is no longer restricted to be solely positive, as ob-

served in GCNII. This is because each Chebyshev polynomial com-

prises terms with alternating signs, such as 𝑈4 (P̃) = 16P̃4−12P̃2+1.
This deviation from the underlying homophily assumption allows

Chameleon Squirrel
Dataset

40

45

50

55

60

65

70

75

80

Ac
cu

ra
cy 60.81

45.87

63.44

41.96

69.44

62.14

65.64

54.6

66.82

55.16

Ablation Study
GCN
GCNII
ClenshawGCN
HornerGCN
FixedParamClenshawGCN

Figure 2: Results of the ablation study II. HornerGCN and
FixedParamClenshawGCN are weakened versions of Clen-
shawGCN. HornerGCN is equipped solely with adaptive ini-
tial residue, while FixedParamClenshawGCN is equipped
only with negative second-order residue. Although the per-
formances of these two ablation models are inferior to that
of the complete ClenshawGCN, they still outperform GCN
and GCNII.

FixedParamClenshawGCN to capture more diverse and complex

relationships within the graph structure.

5 CONCLUSION
In this paper, we propose ClenshawGCN, a GNN model equipped

with a novel and neat residual connection module that is able to

mimic a spectral polynomial filter. The construction of this residual

connection inherently uses Clenshaw Summation Algorithm. We

prove that our model implicitly simulates any polynomial filter

based on the second-kind Chebyshev basis.
For future work, a promising direction is to further investigate

the mechanism of such spectral-domain-inspired spatial models

or spectral models entangled with non-linearity. We expect such

models to incorporate the strengths of both sides according to our

preliminary results. The entangled structure also poses a challenge

in scaling up such models to large graphs.

ACKNOWLEDGMENTS
This research was supported in part by National Natural Science

Foundation of China (No. U2241212, No. 61972401, No. 61932001,

No. 61832017), by the major key project of PCL (PCL2021A12), by

Beijing Natural Science Foundation (No. 4222028), by Beijing Out-

standing Young Scientist Program No.BJJWZYJH012019100020098,

by Alibaba Group through Alibaba Innovative Research Program,

and by Huawei-Renmin University joint program on Information

Retrieval. We also wish to acknowledge the support provided by

Engineering Research Center of Next-Generation Intelligent Search

and Recommendation, Ministry of Education. Additionally, we ac-

knowledge the support from Intelligent Social Governance Interdis-

ciplinary Platform, Major Innovation & Planning Interdisciplinary

Platform for the “Double-First Class” Initiative, Public Policy and

Decision-making Research Lab, Public Computing Cloud, Renmin

University of China.

622

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhe Guo and Zhewei Wei

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop:

Higher-order graph convolutional architectures via sparsified neighborhood

mixing. In international conference on machine learning. PMLR, 21–29.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-

work. In Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining. 2623–2631.

[3] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2021.

Graph neural networks with convolutional arma filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021).

[4] Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan

Webb, and Emanuele Rossi. 2021. Grand: Graph neural diffusion. In International
Conference on Machine Learning. PMLR, 1407–1418.

[5] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

Simple and deep graph convolutional networks. In ICML. PMLR, 1725–1735.

[6] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal

Generalized PageRank Graph Neural Network. In ICLR.
[7] Charles W Clenshaw. 1955. A note on the summation of Chebyshev series. Math.

Comp. 9, 51 (1955), 118–120.
[8] Mark Craven, Andrew McCallum, Dan PiPasquo, Tom Mitchell, and Dayne Fre-

itag. 1998. Learning to extract symbolic knowledge from the World Wide Web.
Technical Report. Carnegie-mellon univ pittsburgh pa school of computer Sci-

ence.

[9] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. (6

2016). http://arxiv.org/abs/1606.09375

[10] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,

Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional

networks on graphs for learning molecular fingerprints. Advances in neural
information processing systems 28 (2015).

[11] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[12] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[13] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2009. Wavelets

on Graphs via Spectral Graph Theory. CoRR abs/0912.3848 (2009). arXiv:0912.3848

http://arxiv.org/abs/0912.3848

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[15] Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. 2021. BernNet:

Learning Arbitrary Graph Spectral Filters via Bernstein Approximation. Advances
in Neural Information Processing Systems 34 (6 2021), 14239–14251. http://arxiv.

org/abs/2106.10994

[16] Mingguo He, Zhewei Wei, and Ji-Rong Wen. 2022. Convolutional Neural Net-

works on Graphs with Chebyshev Approximation, Revisited. arXiv preprint
arXiv:2202.03580 (2022).

[17] William George Horner. 1819. XXI. A newmethod of solving numerical equations

of all orders, by continuous approximation. Philosophical Transactions of the
Royal Society of London 109 (1819), 308–335.

[18] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell,

and Kurt Keutzer. 2014. Densenet: Implementing efficient convnet descriptor

pyramids. arXiv preprint arXiv:1404.1869 (2014).
[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[20] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[21] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then propagate: Graph neural networks meet personalized pagerank. In

ICLR.
[22] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffu-

sion improves graph learning. arXiv preprint arXiv:1911.05485 (2019).
[23] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. 2019. DeepGCNs:

Can GCNs Go as Deep as CNNs? (4 2019). http://arxiv.org/abs/1904.03751

[24] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. In Thirty-Second AAAI
conference on artificial intelligence.

[25] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and

Weining Qian. 2022. Finding Global Homophily in Graph Neural Networks

When Meeting Heterophily. In International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA (Proceedings of Machine
Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song,

Csaba Szepesvári, Gang Niu, and Sivan Sabato (Eds.). PMLR, 13242–13256.

[26] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar

Bhalerao, and Ser-Nam Lim. 2021. Large Scale Learning on Non-Homophilous

Graphs: New Benchmarks and Strong Simple Methods. Advances in Neural
Information Processing Systems 34 (10 2021), 20887–20902. http://arxiv.org/abs/

2110.14446

[27] Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang Tang.

2021. Graph Neural Networks with Adaptive Residual. NIPS (2021). https:

//github.com/lxiaorui/AirGNN.

[28] Sitao Luan, ChenqingHua, Qincheng Lu, Jiaqi Zhu,Mingde Zhao, Shuyuan Zhang,

Xiao-Wen Chang, and Doina Precup. 2021. Is Heterophily A Real Nightmare For

Graph Neural Networks To Do Node Classification? (9 2021). http://arxiv.org/

abs/2109.05641

[29] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan

Zhang, Xiao-Wen Chang, and Doina Precup. 2021. Is Heterophily A Real Night-

mare For Graph Neural Networks To Do Node Classification? arXiv preprint
arXiv:2109.05641 (2021).

[30] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan

Zhang, Xiao-Wen Chang, and Doina Precup. 2022. Revisiting heterophily for

graph neural networks. arXiv preprint arXiv:2210.07606 (2022).
[31] John C Mason and David C Handscomb. 2002. Chebyshev polynomials. Chapman

and Hall/CRC.

[32] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:

Homophily in social networks. Annual review of sociology (2001), 415–444.

[33] Sunil K Narang, Akshay Gadde, and Antonio Ortega. 2013. Signal processing

techniques for interpolation in graph structured data. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE, 5445–5449.

[34] Hoang Nt and Takanori Maehara. 2019. Revisiting graph neural networks: All

we have is low-pass filters. arXiv preprint arXiv:1905.09550 (2019).
[35] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

pagerank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[36] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.

Geom-GCN: Geometric Graph Convolutional Networks. In ICLR.
[37] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:

Towards Deep Graph Convolutional Networks on Node Classification. In ICLR.
[38] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. 2021. E (n) equi-

variant graph neural networks. In International conference on machine learning.
PMLR, 9323–9332.

[39] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2020. Interpreting

graph neural networks for nlp with differentiable edge masking. arXiv preprint
arXiv:2010.00577 (2020).

[40] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[41] David I Shuman, Benjamin Ricaud, and Pierre Vandergheynst. 2013. Vertex-

Frequency Analysis on Graphs. (7 2013). http://arxiv.org/abs/1307.5708

[42] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the

importance of initialization and momentum in deep learning. In International
conference on machine learning. PMLR, 1139–1147.

[43] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social influence analysis

in large-scale networks. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. 807–816.

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[45] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017),
10–48550.

[46] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2019. Improving

graph attention networks with large margin-based constraints. arXiv preprint
arXiv:1910.11945 (2019).

[47] Xiyuan Wang and Muhan Zhang. 2022. How Powerful are Spectral Graph Neural

Networks. (5 2022). http://arxiv.org/abs/2205.11172

[48] Wikipedia. 2023. Clenshaw algorithm — Wikipedia, The Free Encyclope-

dia. http://en.wikipedia.org/w/index.php?title=Clenshaw%20algorithm&oldid=

1089015914. [Online; accessed 03-February-2023].

[49] Wikipedia. 2023. Horner’s method —Wikipedia, The Free Encyclopedia. http://en.

wikipedia.org/w/index.php?title=Horner’s%20method&oldid=1135871092. [On-

line; accessed 03-February-2023].

[50] Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li, Jian

Pei, and Bo Long. 2021. Graph neural networks for natural language processing:

A survey. arXiv preprint arXiv:2106.06090 (2021).
[51] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2020. Graph neural

networks in recommender systems: a survey. ACM Computing Surveys (CSUR)
(2020).

[52] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs

with Jumping Knowledge Networks. In ICML.

623

http://arxiv.org/abs/1606.09375
https://arxiv.org/abs/0912.3848
http://arxiv.org/abs/0912.3848
http://arxiv.org/abs/2106.10994
http://arxiv.org/abs/2106.10994
http://arxiv.org/abs/1904.03751
http://arxiv.org/abs/2110.14446
http://arxiv.org/abs/2110.14446
https://github.com/lxiaorui/AirGNN.
https://github.com/lxiaorui/AirGNN.
http://arxiv.org/abs/2109.05641
http://arxiv.org/abs/2109.05641
http://arxiv.org/abs/1307.5708
http://arxiv.org/abs/2205.11172
http://en.wikipedia.org/w/index.php?title=Clenshaw%20algorithm&oldid=1089015914
http://en.wikipedia.org/w/index.php?title=Clenshaw%20algorithm&oldid=1089015914
http://en.wikipedia.org/w/index.php?title=Horner's%20method&oldid=1135871092
http://en.wikipedia.org/w/index.php?title=Horner's%20method&oldid=1135871092

Clenshaw Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[53] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[54] Wentao Zhang, Zeang Sheng, Ziqi Yin, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi

Yang, and Bin Cui. 2022. Model Degradation Hinders Deep Graph Neural Net-

works. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2493–2503. https://doi.org/10.1145/3534678.3539374

[55] Wentao Zhang, Ziqi Yin, Zeang Sheng, Wen Ouyang, Xiaosen Li, Yangyu Tao,

Zhi Yang, and Bin Cui. 2021. Graph Attention Multi-Layer Perceptron. CoRR
abs/2108.10097 (2021). arXiv:2108.10097 https://arxiv.org/abs/2108.10097

[56] Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang. 2021.

Adaptive Diffusion in Graph Neural Networks. Advances in Neural Information
Processing Systems 34 (2021), 23321–23333.

[57] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. 2022.

Graph neural networks for graphs with heterophily: A survey. arXiv preprint
arXiv:2202.07082 (2022).

[58] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. Beyond homophily in graph neural networks: Current limitations

and effective designs. Advances in Neural Information Processing Systems 33
(2020), 7793–7804.

[59] Meiqi Zhu, XiaoWang, Chuan Shi, Houye Ji, and Peng Cui. 2021. Interpreting and

unifying graph neural networks with an optimization framework. In Proceedings
of the Web Conference 2021. 1215–1226.

A PROOF FOR LEMMA 3.2
Proof. Denote

𝐴 =


1

−2𝑥 1

1 −2𝑥 1

· · ·
1 −2𝑥 1


, ®𝑢 =


𝑈−1 (𝑥)
𝑈0 (𝑥)
𝑈1 (𝑥)
· · ·

𝑈𝑛 (𝑥)


, ®𝑎 =


0

𝑎0
𝑎1
· · ·
𝑎𝑛


,

with 𝐴 ∈ R(𝑛+2)×(𝑛+2)
, ®𝑢 ∈ R𝑛+2, then

𝑆 (𝑥) = ®𝑎⊤®𝑢. (12)

Indexing a vector from −1, we denote 1𝑖 ∈ R(𝑛+2) as the one-hot
vector with the 𝑖-th element being 1 (𝑖 starts from −1). Note that,
from the recurrence relation for the Chebyshev polynomials given

in Equation (4), we soonly get:

𝐴®𝑢 =


𝑈−1 (𝑥)

−2𝑥𝑈−1 (𝑥) +𝑈0 (𝑥)
0

· · ·
0


=


0

𝑈0 (𝑥)
0

· · ·
0


= 10 . (13)

Now suppose that there is a vector
®𝑏 = [𝑏−1, 𝑏0, · · · , 𝑏𝑛] satisfy-

ing

®𝑎⊤ = ®𝑏⊤𝐴, (14)

then

𝑆 (𝑥) (12)

= ®𝑎⊤®𝑢 (14)

= ®𝑏⊤𝐴®𝑢 (13)

= ®𝑏10 = 𝑏0 .
On the other hand, notice that the recurrence defined in (10) is

exactly the Gaussian Elimination process of solving ®𝑎⊤ = ®𝑏⊤𝐴 from

𝑏𝑛 down to 𝑏0, which means that {𝑏𝑛, · · · , 𝑏0} calculated by (10)

satisfies (14). Proof for Lemma 3.2 is finished. □

B OVERALL EXPERIMENTAL SETUP

Datasets and Splits. We use both homophilic graphs and het-

erophilic graphs in our experiments following former works, espe-

cially GCN [20], Geom-GCN [36] and LINKX [26].

• Citation Graphs. Cora, PubMed, and CiteSeer [40] are citation

datasets processed by Planetoid [53]. In these graphs, nodes are

scientific publications, edges are citation links processed to be

bidirectional, and node features are bag-of-words representations

of the documents. These graphs show strong homophily.

• Wikipedia Graphs. The Chameleon dataset and Squirrel dataset

are page-page networks on topics in Wikipedia, where nodes are

entries, and edges are mutual links.

• Webpage Graphs. Texas dataset and Cornell dataset collect web

pages from computer science departments of different universi-

ties. The nodes in the graphs are web pages of students, projects,

courses, staff, or faculties [8], the edges are hyperlinks between

them, and node features are the bag-of-words representations of

these web pages.

• Co-occurrence Network. The Actor network represents the co-

occurrence of actors on a Wikipedia page [43]. The node features

are filtered keywords in the Wikipedia pages. The categorization

of the nodes is done by [36].

• Mutual following Networks. Graphs in Twitch-Gamers, Penn94

and genius dataset represent mutual following relationships be-

tween accounts from (subsets of) three platforms respectively,

that are: streaming platform Twitch, facebook 100 networks and

genius.com. The nodes are labeled by states of the channels, gen-

ders of the users and tagged states of spam users, respectively.

We list the messages of these networks in Table 1, whereH(𝐺) is
the measure of homophily in a graph proposed by Geom-GCN [36].

Larger H(𝐺) implies stronger homophily.

For all datasets except for the Twitch-gamers dataset, we take a

60%/20%/20% train/validation/test split proportion following former

works [6, 15, 16, 36]. We run these datasets twenty times over

random splits with random initialization seeds. For the Twitch-

gamers dataset, we use the five random splits given in LINKX [26]

with a 50%/25%/25% proportion to align with reported results.

ClenshawGCN Setup. Before and after the stack of Clenshaw

convolution layers, there are two non-linear transformations to link

with the dimensions of the raw features and final class numbers.

All intermediate transformation layers are set with 64 hidden units.

For initialization of ®𝛼 = [𝛼0, · · · , 𝛼𝐾], we simply set 𝛼𝐾 to be 1 and

all the other coefficients to be 0, which corresponds to initializing

the polynomial filter to be 𝑔(𝜆) = 1 (or equivalently, ℎ(𝜇) = 1).

Optimization and Tuning. For the optimization process on the

training sets, we tune ®𝛼 with SGD optimizer with momentum [42]

and all the other parameters with Adam SGD [19]. We use early

stopping with a patience of 300 epochs.

We tune all the hyperparameters on validation sets. To accel-

erate hyperparameter searching, we use Optuna [2] and run 100

completed trials
3
for each dataset. Below is the search space:

• Orders of convolutions: 𝐾 ∈ {8, 12, · · · , 32};
• Learning rates: {0.001, 0.005, 0.1, 0.2, 0.3, 0.4, 0.5};
• Weight decays: {1e−8, 1e−7, · · · , 1e−3};
• Dropout rates: {0, 0.1, · · · , 0.7}.

The selected hyperparameters can be found in our public repository.

3
In Optuna, a trial means a run with hyperparameter combination; the term ‘complete’

refers to that, some trials of bad expectations would be pruned before completion.

624

https://doi.org/10.1145/3534678.3539374
https://arxiv.org/abs/2108.10097
https://arxiv.org/abs/2108.10097

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhe Guo and Zhewei Wei

C SUPPLEMENTARY EXPERIMENTS
This appendix section involves two experiments we conducted

during the rebuttal period that are valuable to share.

C.1 Supplementary Experiment I: Overcoming
Model Degradation

Stacking more convolution layers while overcoming model degra-

dation is the shared attempt of early graph residuals. Pioneer works

often demonstrate their models’ capability to mitigate degradation

by presenting performance results with varying numbers of layers

as control groups, e.g., Li et al. [23, Figure 1] and Chen et al. [5,

Table 3 & Figure 2].

In line with these studies, we conduct experiments to evaluate

ClenshawGCN’s performance with different truncated orders on

the PubMed and Squirrel datasets. The experimental setups follow

those described in Appendix B, with the exception that the value

of 𝐾 is fixed.

4 8 12 16 20 24 28 32
K / Stacked Layers

50

60

70

80

90

M
ea

n
A

cc
ur

ac
y

Mean Acc: 91.84

Mean Acc: 63.22

PubMed
Squirrel

Figure 3: ClenshawGCN’s performance with different fixed
values of 𝐾 . The shaded areas indicate the 95% confidence
intervals over twenty random splits. The circled data points
highlight the best average accuracies achieved. Model degra-
dations have been overcome in that both curves do not show
decreasing trends.

Results. As shown in Figure 3, ClenshawGCN does not en-

counter model degradation. The best performances are obtained

on relatively large layer numbers, i.e., 𝐾 = 10 and 𝐾 = 16, respec-

tively.

Notably, even on relatively shallow ClenshawGCNs with 𝐾 = 2,

the performances remain highly competitive with other compared

models. This is particularly evident in the significant performance

improvement of ClenshawGCN(𝐾=2) compared to GCN, despite

both models utilizing two hops of propagation. Detailed perfor-

mance comparisons with other models can be found in Section 4.1

and Section 4.2.

C.2 Supplementary Experiment II: Effectiveness
in Equipping GAT model

In the main body of the paper, we concentrate on a GCN backbone,

since GCN, when equipped with Clenshaw residual connections,

can be interpreted through a polynomial filter, while for other

spatial backbones, i.e., Graph Attention Networks (GAT) [45], such

an interpretation is less obvious.

However, Clenshaw residuals potentially benefit general spatial

models. From the spectral perspective, when used in GCN con-

volution layers, negative residuals play a role in leveraging the

Chebyshev polynomials. From a spatial perspective, the negative

residuals are also well-motivated as they explicitly exploit negative
relations. Similar ideas can be found in other approaches, such as

‘sharpening’, or the ‘delta operator’ introduced in Abu-El-Haija

et al. [1] in the context of MixHop.

GAT with Clenshaw Residuals. We propose the formulation

of GAT enhanced with Clenshaw residuals. GATConv follows the

definition in Velickovic et al. [45]:

H(ℓ) = 2GATConv(H(ℓ−1)) − H(ℓ−2) + 𝛼ℓH, ℓ ∈ [0, · · · , 𝐾] ,

H(−2) = H(−1) = O,H∗ = MLP(X,W∗) .
We also evaluate the effectiveness of the individual negative

residual submodule:

H(ℓ) = 2GATConv(H(ℓ−1)) − H(ℓ−2) , ℓ ∈ [1, · · · , 𝐾] ,

H(−1) = O,H(0) = MLP(X,W∗).

Setup. Weadopt the implementation of GATConv FromPyG [12].

Both the vanilla GAT model and GAT equipped with Jumping

Knowledge [52] are used as baselines. In all cases, the GAT convo-

lution layers use eight attention heads, each with eight hidden chan-

nels. For Jumping Knowledge, we constrain the pooling method

to either concatenation or max pooling. We conduct repeating ex-

periments over 20 splits on the Squirrel, Chameleon, and PubMed

datasets. Hyperparameter tuning and data splits follow the same

setup as described in Section B, except that the number of stacked

GAT layers are chosen from [2, 4, · · · , 12].

Table 5: The performance of GAT improves on all three
datasets when equipped with Clenshaw residual connections.
This suggests that Clenshaw residual connections have the
potential to be an effective submodule for general spatial
models, extending beyond the GCN backbone.

Method / Variants Squirrel Chameleon PubMed

GAT 51.13 ± 1.70 64.45 ± 1.14 88.74 ± 0.23

GAT+JK 51.61 ± 4.31 63.63 ± 0.95 88.60 ± 0.26

GAT+Negative Residual 58.89 ± 0.90 65.85 ± 0.89 91.27 ± 0.19

GAT+Clenshaw Residual 51.56 ± 1.29 66.84 ± 1.07 91.34 ± 0.17

Results. Table 5 demonstrates the results.WhenGAT is equipped

with Clenshaw residual connections, it achieves significantly im-

proved performance on the Chameleon and PubMed datasets com-

pared to the baseline. The use of negative residuals alone also yields

notable benefits, particularly on the Squirrel dataset.

625

	Abstract
	1 introduction
	2 Preliminaries
	2.1 Notations
	2.2 Spatial Background
	2.3 Spectral Background
	2.4 Graph Residual Connections

	3 Method
	3.1 Clenshaw Convolution
	3.2 A Warm-up: GCNII and Horner's method
	3.3 Polynomial Filter behinds ClenshawGCN

	4 Experiments
	4.1 Comparing ClenshawGCN with Other Residual-Based Methods.
	4.2 Comparing ClenshawGCN with Spectral Baselines
	4.3 ClenshawGCN on Large non-Homophilous Datasets
	4.4 Ablation Study I: Advantage over Pure Polynomial Filters.
	4.5 Ablation Study II: Submodules of Clenshaw Residual Connection

	5 Conclusion
	Acknowledgments
	References
	A Proof for Lemma 3.2
	B Overall Experimental Setup
	C Supplementary Experiments
	C.1 Supplementary Experiment I: Overcoming Model Degradation
	C.2 Supplementary Experiment II: Effectiveness in Equipping GAT model

